Northeast Fisheries Science Center Reference Document 93-18

# Report of the 16th Northeast Regional Stock Assessment Workshop (16th SAW)

# Stock Assessment Review Committee (SARC) Consensus Summary of Assessments

NOAA/National Marine Fisheries Service Northeast Fisheries Science Center Woods Hole, MA 02543-1097

This document was presented to and reviewed by the Stock Assessment Review Committee (SARC) of the 16th Northeast Regional Stock Assessment Workshop (16th SAW)

July 1993

Nine documents associated with the 16th Northeast Regional Stock Assessment Workshop (16th SAW) have been published as Northeast Fisheries Science Center reference documents. For copies of these documents, contact the NMFS/NEFSC, Information Services Unit, 166 Water St., Woods Hole, MA 02543-1097, (508)548-5123.

# Reports Associated with the 16th Northeast Regional Stock Assessment Workshop (16th SAW)

| CRD 93-13 | Assessment of pollock, <i>Pollachius virens</i> , L., in Divisions 4VWX and Subareas 5 and 6, 1993                                                                             |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | by R. K. Mayo and B. F. Figuerido                                                                                                                                              |
| CRD 93-14 | Assessment of summer flounder (Paralichthys dentatus), 1993: Report of the<br>Stock Assessment Workshop (SAW) Summer Flounder Working Group                                    |
|           | M. Terceiro, ed.                                                                                                                                                               |
| CRD 93-15 | Analytical assessment of the Atlantic herring coastal stock complex<br>by D. Stevenson, D. Libby, and K. Friedland                                                             |
| CRD 93-16 | Report of the Workshop on Atlantic Herring Science and Assessment in the<br>Gulf of Maine/Georges Bank Area<br>NOAA/NMFS/NEFSC                                                 |
| CRD 93-17 | Evaluation of available data for the development of overfishing definition for tilefish in the Middle Atlantic by G. Shepherd                                                  |
| CPD 93-18 | Report of the 16th Northeast Regional Stock Assessment Workshop (16th<br>SAW), Stock Assessment Review Committee (SARC) Consensus Summary of<br>Assessments<br>NOAA/NMFS/NEFSC |
| CRD 93-19 | Report of the 16th Northeast Regional Stock Assessment Workshop (16th<br>SAW), The Plenary<br>NOAA/NMFS/NEFSC                                                                  |
| CRD 93-20 | Calculating biological reference points for American lobsters<br>by J. Idoine and M. Fogarty                                                                                   |
| CRD 93-21 | Assessment of American lobster stock status off the Northeast United States, 1993                                                                                              |
| · .       | S. Murawski, ed.                                                                                                                                                               |

# TABLE OF CONTENTS

| INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POLLOCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                |
| Terms of Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                |
| The Fishery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                |
| Stock Abundance and Biomass Indices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                |
| Mortality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                |
| Estimates of Stock Size and Fishing Mortality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                |
| Biological Reference Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                |
| Short-Term Projections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                |
| Analyses of Sink Gillnet Fishery Effort Measures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                |
| and Pollock Length Composition Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                |
| Discussion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                |
| Subcommittee Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                |
| SARC Discussion and Research Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                |
| SUMMER FLOUNDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                |
| Terms of Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                |
| Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                |
| Fishery Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                |
| Stock Abundance Indices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                |
| Estimates of Stock Size and Fishing Mortality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                |
| Evaluation of NEFSC Winter Trawl Survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                |
| Evaluation of NEFSC Sea Sampling Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                |
| Discussion and Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                |
| References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                |
| and the second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                |
| ATLANTIC HERRING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60                                                                                                                                                                             |
| ATLANTIC HERRING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60                                                                                                                                                                             |
| ATLANTIC HERRING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60<br>60<br>60                                                                                                                                                                 |
| ATLANTIC HERRING<br>Terms of Reference<br>Introduction<br>Commercial Landings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                |
| ATLANTIC HERRING<br>Terms of Reference<br>Introduction<br>Commercial Landings<br>Age Composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                |
| ATLANTIC HERRING<br>Terms of Reference<br>Introduction<br>Commercial Landings<br>Age Composition<br>Stock Abundance Indices                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                |
| ATLANTIC HERRING<br>Terms of Reference<br>Introduction<br>Commercial Landings<br>Age Composition<br>Stock Abundance Indices<br>Assessment Methodology                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                |
| ATLANTIC HERRING<br>Terms of Reference<br>Introduction<br>Commercial Landings<br>Age Composition<br>Stock Abundance Indices<br>Assessment Methodology<br>Assessment Results                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                |
| ATLANTIC HERRING<br>Terms of Reference<br>Introduction<br>Commercial Landings<br>Age Composition<br>Stock Abundance Indices<br>Assessment Methodology<br>Assessment Results<br>Sources of Uncertainty                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                |
| ATLANTIC HERRING<br>Terms of Reference<br>Introduction<br>Commercial Landings<br>Age Composition<br>Stock Abundance Indices<br>Assessment Methodology<br>Assessment Results<br>Sources of Uncertainty<br>Discussion                                                                                                                                                                                                                                                                                                                                                           | 60<br>60<br>60<br>60<br>61<br>61<br>64<br>64<br>64<br>65<br>67<br>72                                                                                                           |
| ATLANTIC HERRING<br>Terms of Reference<br>Introduction<br>Commercial Landings<br>Age Composition<br>Stock Abundance Indices<br>Assessment Methodology<br>Assessment Results<br>Sources of Uncertainty                                                                                                                                                                                                                                                                                                                                                                         | 60<br>60<br>60<br>60<br>61<br>61<br>64<br>64<br>64<br>65<br>67<br>72                                                                                                           |
| ATLANTIC HERRING<br>Terms of Reference<br>Introduction<br>Commercial Landings<br>Age Composition<br>Stock Abundance Indices<br>Assessment Methodology<br>Assessment Results<br>Sources of Uncertainty<br>Discussion                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                |
| ATLANTIC HERRING<br>Terms of Reference<br>Introduction<br>Commercial Landings<br>Age Composition<br>Stock Abundance Indices<br>Assessment Methodology<br>Assessment Results<br>Sources of Uncertainty<br>Discussion<br>Research Recommendations<br>References                                                                                                                                                                                                                                                                                                                 | 60<br>60<br>60<br>60<br>61<br>61<br>64<br>64<br>64<br>65<br>67<br>72<br>73<br>73<br>74                                                                                         |
| ATLANTIC HERRING<br>Terms of Reference<br>Introduction<br>Commercial Landings<br>Age Composition<br>Stock Abundance Indices<br>Assessment Methodology<br>Assessment Results<br>Sources of Uncertainty<br>Discussion<br>Research Recommendations<br>References                                                                                                                                                                                                                                                                                                                 | 60<br>60<br>60<br>60<br>61<br>64<br>64<br>64<br>65<br>65<br>67<br>72<br>73<br>73<br>74                                                                                         |
| ATLANTIC HERRING<br>Terms of Reference<br>Introduction<br>Commercial Landings<br>Age Composition<br>Stock Abundance Indices<br>Assessment Methodology<br>Assessment Results<br>Sources of Uncertainty<br>Discussion<br>Research Recommendations<br>References                                                                                                                                                                                                                                                                                                                 | 60<br>60<br>60<br>60<br>61<br>64<br>64<br>64<br>65<br>65<br>67<br>72<br>73<br>73<br>74                                                                                         |
| ATLANTIC HERRING<br>Terms of Reference<br>Introduction<br>Commercial Landings<br>Age Composition<br>Stock Abundance Indices<br>Assessment Methodology<br>Assessment Results<br>Sources of Uncertainty<br>Discussion<br>Research Recommendations<br>References                                                                                                                                                                                                                                                                                                                 | 60<br>60<br>60<br>60<br>61<br>61<br>64<br>64<br>64<br>65<br>67<br>72<br>73<br>73<br>74<br>75<br>75                                                                             |
| ATLANTIC HERRING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60<br>60<br>60<br>60<br>61<br>64<br>64<br>64<br>65<br>67<br>72<br>72<br>73<br>73<br>74<br>75<br>75<br>75                                                                       |
| ATLANTIC HERRING<br>Terms of Reference<br>Introduction<br>Commercial Landings<br>Age Composition<br>Stock Abundance Indices<br>Assessment Methodology<br>Assessment Results<br>Sources of Uncertainty<br>Discussion<br>Research Recommendations<br>References<br>AMERICAN LOBSTER<br>Terms of Reference                                                                                                                                                                                                                                                                       | 60<br>60<br>60<br>60<br>61<br>64<br>64<br>64<br>65<br>67<br>72<br>72<br>73<br>73<br>74<br>74<br>75<br>75<br>75<br>75<br>79                                                     |
| ATLANTIC HERRING         Terms of Reference         Introduction         Commercial Landings         Age Composition         Stock Abundance Indices         Assessment Methodology         Assessment Results         Sources of Uncertainty         Discussion         References         AMERICAN LOBSTER         Terms of Reference         Introduction         Description of the Fishery         Stock Abundance Indices                                                                                                                                               | 60<br>60<br>60<br>60<br>61<br>64<br>64<br>64<br>65<br>67<br>72<br>72<br>73<br>73<br>74<br>75<br>75<br>75<br>75<br>75<br>79<br>81                                               |
| ATLANTIC HERRING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60<br>60<br>60<br>60<br>61<br>64<br>64<br>64<br>65<br>67<br>72<br>73<br>73<br>74<br>75<br>75<br>75<br>75<br>75<br>75<br>81<br>81<br>82                                         |
| ATLANTIC HERRING<br>Terms of Reference<br>Introduction<br>Commercial Landings<br>Age Composition<br>Stock Abundance Indices<br>Assessment Methodology<br>Assessment Results<br>Sources of Uncertainty<br>Discussion<br>Research Recommendations<br>References<br>AMERICAN LOBSTER<br>Terms of Reference<br>Introduction<br>Description of the Fishery<br>Stock Abundance Indices<br>Estimates of Stock Size and Fishing Mortality<br>Biological Reference Points                                                                                                              | 60<br>60<br>60<br>60<br>61<br>64<br>64<br>64<br>65<br>67<br>72<br>73<br>73<br>74<br>73<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>98<br>81<br>82<br>98                       |
| ATLANTIC HERRING         Terms of Reference         Introduction         Commercial Landings         Age Composition         Stock Abundance Indices         Assessment Methodology         Assessment Results         Sources of Uncertainty         Discussion         Research Recommendations         References         AMERICAN LOBSTER         Terms of Reference         Introduction         Description of the Fishery         Stock Abundance Indices         Estimates of Stock Size and Fishing Mortality         Biological Reference Points         Discussion | 60<br>60<br>60<br>60<br>61<br>64<br>64<br>64<br>65<br>67<br>72<br>73<br>73<br>74<br>73<br>74<br>75<br>75<br>75<br>75<br>75<br>75<br>79<br>81<br>81<br>82<br>98<br>             |
| ATLANTIC HERRING         Terms of Reference         Introduction         Commercial Landings         Age Composition         Stock Abundance Indices         Assessment Methodology         Assessment Results         Sources of Uncertainty         Discussion         References         AMERICAN LOBSTER         Terms of Reference         Introduction         Description of the Fishery         Stock Abundance Indices         Estimates of Stock Size and Fishing Mortality         Biological Reference Points         Discussion         SARC Comments            | 60<br>60<br>60<br>60<br>61<br>64<br>64<br>64<br>65<br>67<br>72<br>73<br>73<br>74<br>74<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>79<br>81<br>81<br>82<br>98<br> |
| ATLANTIC HERRING         Terms of Reference         Introduction         Commercial Landings         Age Composition         Stock Abundance Indices         Assessment Methodology         Assessment Results         Sources of Uncertainty         Discussion         Research Recommendations         References         AMERICAN LOBSTER         Terms of Reference         Introduction         Description of the Fishery         Stock Abundance Indices         Estimates of Stock Size and Fishing Mortality         Biological Reference Points         Discussion | 60<br>60<br>60<br>60<br>61<br>64<br>64<br>64<br>65<br>67<br>72<br>73<br>73<br>74<br>74<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75           |

| TILEFISH                                  |       | •••••                                   | 108 |
|-------------------------------------------|-------|-----------------------------------------|-----|
| Terms of Reference                        | ••••• |                                         | 108 |
| / Review of Data Possibilities for        |       |                                         |     |
| Overfishing Definition                    |       |                                         | 108 |
| Application of a Surplus Production Model |       |                                         | 108 |
| Conclusions                               |       | •••••                                   | 109 |
| Major Sources of Uncertainty              |       |                                         | 109 |
| Research Recommendations                  |       |                                         | 112 |
| References                                |       |                                         | 112 |
| SARC ASSESSMENT METHODS SUBCOMMITTEE      |       |                                         | · . |
| CANDIDATE TERMS OF REFERENCE              |       | •••••                                   | 113 |
| OTHER BUSINESS                            |       |                                         | 115 |
| Upcoming SAW Meetings                     |       | • • • • • • • • • • • • • • • • • • • • | 115 |
| The SARC Procedure                        |       |                                         |     |

· .

### INTRODUCTION

The Stock Assessment Review Committee (SARC) of the 16th Northeast Regional Stock Assessment Workshop (16th SAW) met at the Northeast Fisheries Science Center (NEFSC) Woods Hole, Massachusetts during 21 - 25 June 1993. The SARC chairman was Dr. Vaughn Anthony (NEFSC). Members of the SARC were from a number of fisheries organizations and academia within the region, one agency from outside the region, and one from Canada (Table 1). Nearly 50 individuals participated in the meeting (Table 2).

The meeting was organized according to the SAW structure recommended by the SAW Steering Committee at a meeting in March 1993 and described in the Report of the 15th Northeast Regional Stock Assessment Workshop (15th SAW), The Plenary (pages 54-59).

Under the new SAW structure, SARC Subcommittees refined the analyses for the SARC to review, formulating many of the recommendations adopted by the SARC, and drafted summaries of assessments featured in this report. Subcommittee members who participated in the development of this documentation are presented in Table 3.

The SARC agenda (Table 4) included twelve species/stocks to review (four first priority; six second priority; and two third priority). Time, however, did not permit the evaluation of assessments for all 12 species/stocks. The SARC reviewed only assessments for pollock, summer flounder, herring, and lobster (first priority); and data possibilities for an overfishing definition as well as a surplus production model for tilefish (second priority). The geographic research area and statistical reporting areas pertaining to these species are presented in Figures 1 and 2.

This report, Report of the 16th Northeast Regional StockAssessment Workshop (16th SAW), Stock Assessment Review Committee (SARC) Consensus Summary of Assessments (NEFSC Reference Document 93-18), contains evaluations of presented analyses accompanied by a series of research recommendations developed through the SAW process. Specific recommendations are directed to the SAW Steering Committee and SARC Subcommittees.

In addition to the SARC report, publications resulting from this meeting include seven other documents in the NEFSC Reference Document series (Table 5). Some of the working papers on species/stocks that the SARC did not have time to review will undergo the usual NEFSC review 
 Table 1.
 Stock Assessment Review Committee (SARC) composition

Chair, NEFSC Chief Scientific Advisor:

### Vaughn Anthony

Four ad hoc assessment members chosen by the Chair:

> Ray Conser Dan Hayes Steve Murawski Paul Rago

One person from NMFS Northeast Regional Office:

### Pete Colosi

One person from each Regional Fishery Management Council:

### Andy Applegate, NEFMC Tom Hoff, MAFMC

Atlantic States Marine Fisheries Commission / State personnel:

> Mark Gibson, RI Anne Lange, MD David Stevenson, ME

One Scientist from:

Canada - Doug Pezzack, DFO Academia - Jeremy Collie, URI Other Region - Mary Fabrizio, USF&WS/ NFRC/GL

process for inclusion in the NEFSC Reference Document series.

The first draft of the Advisory Report on Stock Status was produced by the SARC. Information was compiled according to the format approved by the SAW Steering Committee. The draft Advisory Report will be provided to the Steering Committee two weeks before the SAW Plenary Meeting scheduled for 29 July 1993, where the report will be reviewed in open session. The final version of the Advisory Report will be featured in the Plenary Report (NEFSC Reference Document 93-19).

The report of the Workshop on Atlantic Herring Science and Assessment in the Gulf of Maine/Georges Bank Area was presented for the SARC's information. The organization of the workshop was recommended at the 13th SAW SARC. The workshop focused on two main issues: (1) resource survey techniques in herring assessments and (2) stock identification. Workshop participants reviewed the conclusions and recommendations from the report and sought the SARC's endorsement. It was agreed to include the report in the NEFSC Reference Document series along with other selected documents from this meeting.

Presentations and discussions at this meeting led to the development of candidate terms of reference for the SARC Assessment Methods Subcommittee. These include: (1) potential biases in SARC assessment results, (2) methods for medium-term stochastic projections, (3) multiple indices of abundance within the DeLury model, (4) catch per unit effort (CPUE)-based indices of abundance for VPA tuning, (5) calibration of recruitment indices, (6) effects of outliers in survey data, (7) sensitivity of ADAPT results to multiple indices, and (8) extending the time series of stock-recruitment data. The complexity and amount of work needed to address these terms of reference is summarized in a separate section of this report.

Participants also discussed the current SAW process and offered suggestions on how to improve it. Of particular interest was a better understanding of the roles of the SARC itself and its Subcommittees. This discussion is summarized under other business.

### Table 2. List of participants

### National Marine Fisheries Service

Northeast Fisheries Science Center Frank Almeida Vaughn Anthony Betsy Arden Jon Brodziak Steve Clark Ray Conser Brenda Figuerido Mike Fogarty Kevin Friedland Wendy Gabriel Ruth Haas Dan Haves Tom Helser J. Idoine Marjorie Lambert Phil Logan Ralph Mayo Nancy McHugh Steve Murawski Helen Mustafa Loretta O'Brien Greg Power Paul Rago Fred Serchuk Tim Sheehan Gary Shepherd Terry Smith Katherine Sosebee Mark Terceiro Jim Weinberg Susan Wigley

Northeast Regional Office Pete Colosi

### **Mid-Atlantic Fishery Management Council**

Tom Hoff

#### **New England Fishery Management Council**

Andrew Applegate

Connecticut Department of Environmental Protection

#### David Simpson

### Maine Division of Marine Resources

David Stevenson

### Maryland Department of Natural Resources

Anne Lange

**Massachusetts Division of Marine Fisheries** 

Mike Armstrong Steve Cadrin Paul Caroso Steve Correia Tom Currier Bruce Estrella David Pierce

### **New York Division of Marine Resources**

#### John Mason

Rhode Island Division of Fish and Wildlife

### Mark Gibson

### University of Rhode Island

### Jeremy Collie

### U.S. Fish and Wildlife Service

### Mary Fabrizio

### Department of Fisheries and Oceans, Canada

Doug Pezzack

| Subcommittee/Participants                                                                                                                                                                                                                                                                                                                                | Meeting Date(s) and Meeting Place                                                                                                                                                                                                 | Analyses Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Northern Demersal                                                                                                                                                                                                                                                                                                                                        | 24-18 May 1993, Woods Hole, MA                                                                                                                                                                                                    | Pollock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| A. Applegate, NEFMC                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   | Silver hake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| D. Hayes, NEFSC                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | (2 stocks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| T. Helser, NEFSC                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                   | Witch flounder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| R. Mayo, NEFSC (Chair)                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| L. O'Brien, NEFSC                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| K. Sossebee, NEFSC                                                                                                                                                                                                                                                                                                                                       | المراجع والمراجع المراجع والمراجع المرا<br>1975 - مراجع مراجع المراجع الم |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| S. Wigley, NEFSC                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| B. Figuerido, NEFSC                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| S. Murawski, NEFSC                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| G. Power, NEFSC                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Soouthern Demersal                                                                                                                                                                                                                                                                                                                                       | 25-27 May 1993, Woods Hole, MA                                                                                                                                                                                                    | Summer flounder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A. Applegate, NEFMC                                                                                                                                                                                                                                                                                                                                      | and SAW Summer Flounder                                                                                                                                                                                                           | Tilefish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| S. Correla, MADM                                                                                                                                                                                                                                                                                                                                         | W.G. 27-29 October 1992                                                                                                                                                                                                           | Goosefish the test of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| T. Currier, MDMF                                                                                                                                                                                                                                                                                                                                         | and the second                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| L. DITOmmaso, NYDEC                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| W. Gabriel, NEFSC (Chair)                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                   | per de la composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| M. Gibson, RIDFW                                                                                                                                                                                                                                                                                                                                         | · · · ·                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| H. Goodale, NERO                                                                                                                                                                                                                                                                                                                                         | 24<br>1                                                                                                                                                                                                                           | (a) A set of the se |
| A. Lange, MDDNR                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| M.Lambert, NEFSC<br>S. Michels, DEDFW                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| R. Monaghan, NCDMF                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                   | er per det de la companya de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C. Moore, MAFMC                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| J. Musick, VIMS                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| P. Rago, NEFSC                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                   | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| L. Rugolo, MDDNR                                                                                                                                                                                                                                                                                                                                         | ·                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| G. Shepherd, NEFSC                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| D. Simpson, CTDEP                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| M. Tereciro (Chair, SF WG)                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                          | 94.05 Mars 1000 Deathbase Markers ME                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| elagic/Coastal Subcommittee<br>J. Brodziak, NEFSC                                                                                                                                                                                                                                                                                                        | 24-25 May 1993, Boothbay Harbor, ME                                                                                                                                                                                               | Atlantic herring<br>Butterfish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| K. Friedland, NEFSC                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                   | Ductornisti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| D. Libby, MEDMR                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| W. Overholtz, NEFSC (Chair)                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   | and a start of the start of the start of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| H. Russell, NEFMC                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H. Russell, NEFMC<br>D. Stevenson, MDMR                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| H. Russell, NEFMC<br>D. Stevenson, MDMR<br>avertabrate Subcommittee                                                                                                                                                                                                                                                                                      | 1-4 June 1993, Woods Hole, MA                                                                                                                                                                                                     | American lobster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H. Russell, NEFMC<br>D. Stevenson, MDMR<br>nvertcbrate Subcommittee<br>T. Angell, RIDFW                                                                                                                                                                                                                                                                  | 1-4 June 1993, Woods Hole, MA                                                                                                                                                                                                     | Squids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| H. Russell, NEFMC<br>D. Stevenson, MDMR<br>nvertabrate Subcommittee<br>T. Angell, RIDFW<br>M. Blake, CTDEP                                                                                                                                                                                                                                               | 1-4 June 1993, Woods Hole, MA                                                                                                                                                                                                     | Squids<br>Illex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| H. Russell, NEFMC<br>D. Stevenson, MDMR<br>avertabrate Subcommittee<br>T. Angell, RIDFW<br>M. Blake, CIDEP<br>P. Briggs, NYDEC                                                                                                                                                                                                                           | 1-4 June 1993, Woods Hole, MA                                                                                                                                                                                                     | Squids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| H. Russell, NEFMC<br>D. Stevenson, MDMR<br>nvertcbrate Subcommittee<br>T. Angell, RIDFW<br>M. Blake, CIDEP<br>P. Briggs, NYDEC<br>J. Brodziak, NEFSC                                                                                                                                                                                                     | 1-4 June 1993, Woods Hole, MA                                                                                                                                                                                                     | Squids<br>Illex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| H. Russell, NEFMC<br>D. Stevenson, MDMR<br>nvertsbrate Subcommittee<br>T. Angell, RIDFW<br>M. Blake, CTDEP<br>P. Briggs, NYDEC<br>J. Brodziak, NEFSC<br>S. Cardin, MADMF                                                                                                                                                                                 | 1-4 June 1993, Woods Hole, MA                                                                                                                                                                                                     | Squids<br>Illex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| H. Russell, NEFMC<br>D. Stevenson, MDMR<br>wertsbrate Subcommittee<br>T. Angell, RIDFW<br>M. Blake, CTDEP<br>P. Briggs, NYDEC<br>J. Brodziak, NEFSC<br>S. Cardin, MADMF<br>R. Conser, NEFSC                                                                                                                                                              | 1-4 June 1993. Woods Hole. MA                                                                                                                                                                                                     | Squids<br>Illex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| H. Russell, NEFMC<br>D. Stevenson, MDMR<br>nvertsbrate Subcommittee<br>T. Angell, RIDFW<br>M. Blake, CTDEP<br>P. Briggs, NYDEC<br>J. Brodziak, NEFSC<br>S. Cardin, MADMF<br>R. Conser, NEFSC<br>B. Estrella, MADMF                                                                                                                                       | 1-4 June 1993, Woods Hole, MA                                                                                                                                                                                                     | Squids<br>Illex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| H. Russell, NEFMC<br>D. Stevenson, MDMR<br>wertsbrate Subcommittee<br>T. Angell, RIDFW<br>M. Blake, CTDEP<br>P. Briggs, NYDEC<br>J. Brodziak, NEFSC<br>S. Cardin, MADMF<br>R. Conser, NEFSC<br>B. Estrella, MADMF<br>M. Fogarty, NEFSC                                                                                                                   | Philip Annual<br>Datas Di Di Di<br>Datas Di Di Di<br>Datas Annual<br>Datas Annual<br>Annual District                                                                                                                              | Squids<br>Illex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| H. Russell, NEFMC<br>D. Stevenson, MDMR<br>nvertabrate Subcommittee<br>T. Angell, RIDFW<br>M. Blake, CTDEP<br>P. Briggs, NYDEC<br>J. Brodziak, NEFSC<br>S. Cardin, MADMF<br>R. Conser, NEFSC<br>B. Estrella, MADMF<br>M. Fogarty, NEFSC<br>D. Hayes, NEFSC                                                                                               | 1-4 June 1993, Woods Hole, MA                                                                                                                                                                                                     | Squids<br>Illex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| H. Russell, NEFMC<br>D. Stevenson, MDMR<br>nvertsbrate Subcommittee<br>T. Angell, RIDFW<br>M. Blake, CTDEP<br>P. Briggs, NYDEC<br>J. Brodziak, NEFSC<br>S. Cardin, MADMF<br>R. Conser, NEFSC<br>B. Estrella, MADMF<br>M. Fogarty, NEFSC<br>D. Hayes, NEFSC<br>J. Idoine, NEFSC                                                                           | 18.7 - Alis Ale<br>Deba - District<br>Deba - District<br>Deba - District<br>Deba - District<br>Ale Deba - District<br>Deba - District<br>Deba - District                                                                          | Squids<br>Illex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| H. Russell, NEFMC<br>D. Stevenson, MDMR<br>nvertsbrate Subcommittee<br>T. Angell, RIDFW<br>M. Blake, CTDEP<br>P. Briggs, NYDEC<br>J. Brodziak, NEFSC<br>S. Cardin, MADMF<br>R. Conser, NEFSC<br>B. Estrella, MADMF<br>M. Fogarty, NEFSC<br>D. Hayes, NEFSC<br>J. Idoine, NEFSC<br>S. Murawski, NEFSC (Act. Cl                                            | 18.7 - Alis Ale<br>Deba - District<br>Deba - District<br>Deba - District<br>Deba - District<br>Ale Deba - District<br>Deba - District<br>Deba - District                                                                          | Squids<br>Illex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| H. Russell, NEFMC<br>D. Stevenson, MDMR<br>avertsbrate Subcommittee<br>T. Angell, RIDFW<br>M. Blake, CTDEP<br>P. Briggs, NYDEC<br>J. Brodziak, NEFSC<br>S. Cardin, MADMF<br>R. Conser, NEFSC<br>B. Estrella,MADMF<br>M. Fogarty, NEFSC<br>D. Hayes, NEFSC<br>J. Idoine, NEFSC<br>S. Murawski, NEFSC (Act. Ch<br>A. Richards, NEFSC                       | 18.7 - Alis Ale<br>Deba - District<br>Deba - District<br>Deba - District<br>Deba - District<br>Ale Deba - District<br>Deba - District<br>Deba - District                                                                          | Squids<br>Illex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| H. Russell, NEFMC<br>D. Stevenson, MDMR<br>Avertsbrate Subcommittee<br>T. Angell, RIDFW<br>M. Blake, CTDEP<br>P. Briggs, NYDEC<br>J. Brodziak, NEFSC<br>S. Cardin, MADMF<br>R. Conser, NEFSC<br>B. Estrella, MADMF<br>M. Fogarty, NEFSC<br>D. Hayes, NEFSC<br>J. Idoine, NEFSC<br>S. Murawski, NEFSC (Act. CH<br>A. Richards, NEFSC<br>H. Russell, NEFMC | 18.7 - Alis Ale<br>Deba - District<br>Deba - District<br>Deba - District<br>Deba - District<br>Ale Deba - District<br>Deba - District<br>Deba - District                                                                          | Squids<br>Illex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| H. Russell, NEFMC<br>D. Stevenson, MDMR<br>nvertsbrate Subcommittee<br>T. Angell, RIDFW<br>M. Blake, CTDEP<br>P. Briggs, NYDEC<br>J. Brodziak, NEFSC<br>S. Cardin, MADMF<br>R. Conser, NEFSC<br>B. Estrella, MADMF<br>M. Fogarty, NEFSC<br>D. Hayes, NEFSC<br>J. Idoine, NEFSC<br>S. Murawski, NEFSC (Act. Ch<br>A. Richards, NEFSC                      | 18.7 - Alis Ale<br>Deba - District<br>Deba - District<br>Deba - District<br>Deba - District<br>Ale Deba - District<br>Deba - District<br>Deba - District                                                                          | Squids<br>Illex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Review Committee (SARC) Meeting            | · · · · · · · · · · · · · · · · · · ·       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |
|--------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · ·                                                                                                                                                                                                                             |
| NEFSC Aqua<br>Woods H                      | rium Conference Room<br>ole, Massachusetts  | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |
|                                            | 9:00 AM) - 25, 1993                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |
|                                            | ·····                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |
| onday, June 21 9:00 AM                     |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |
| nonle d                                    | Chairman II. Anthony                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ing New York                                                                                                                                                                                                                        |
| pening                                     | Chairman, V. Anthony                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · ·                                                                                                                                                                                                                             |
|                                            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |
| pecies/Stock                               | Subcommittee/<br>Presenter(s)               | Rapporteur(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |
| irst Priority                              |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · ·                                                                                                                                                                                                                           |
| Pollock (A)                                | Northern Demersal/<br>R. Mayo               | L. O'Brien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                     |
| Summer flounder (B)                        | K. Mayo<br>Southern Demersal/<br>W. Gabriel | M. Terceiro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                     |
|                                            | TT & VILLET U                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |
| uesday, June 22 9:00 AM                    |                                             | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |
|                                            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |
| Summer flounder (continued)<br>Herring (C) | Pelagic-Coastal/                            | K. Friedland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     |
| Terring (C)                                | W. Overholtz                                | K. Priculand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | general de la composición de la composi<br>Composición de la composición de la comp |
| Review available draft report sections     |                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                     |
| - · · · ·                                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |
| ednesday, June 23 9:00 AM                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |
| Lobster (D)                                | Invertebrate/                               | J. Idoine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     |
|                                            | S. Murawski                                 | J. HOMIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |
| <b>:</b>                                   | · · ·                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |
|                                            |                                             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |
| cond Priority                              |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |
| Silver hake                                | Northern Demersal/                          | A. Applegate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     |
|                                            | GOM-NGB (E)<br>SGB-MidAtl (F)               | R. Mayo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     |
|                                            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |
| Review available draft report sections     |                                             | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                   |
|                                            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |
| ursday, June 24 9:00 AM                    |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |
|                                            |                                             | $= -\frac{2}{3} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac$ | na shekara dh<br>Taranga                                                                                                                                                                                                            |
| Review drafts                              |                                             | κ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                     |
| mt-0-1- (0)                                | 0 11 5 11                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |
| Tilefish (G)                               | Southern Demersal/<br>W. Gabriel            | T. Hoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1. 1. A.                                                                                                                                                                                        |
| Butterfish (H)                             | Pelagic/Coastal                             | T. Hoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     |
| · Oursets                                  | W. Overholtz                                | A <b>T</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | antin<br>Antina                                                                                                                                                                                                                     |
| Squids<br>Illex (I)                        | Invertebrate/                               | A. Lange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |
| Loligo (J)                                 | S. Murawski                                 | . · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a ta Ali                                                                                                                                                                                                                            |
|                                            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |
|                                            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e e til se                                                                                                                                                                                                                          |

### -

# Table 4. Continued

| Species/Stock                                      | Subcommittee/<br>Presenter(s)         | Rapporteur(s) |
|----------------------------------------------------|---------------------------------------|---------------|
| Third Priority (if sufficient time)                |                                       |               |
| Witch Flounder (K)                                 | No. Demersal/<br>R. Mayo              | P. Colosi     |
| Goosefish (L)                                      | So. Demersal/<br>W. Gabriel           | A. Applegate  |
| Consensus Report                                   |                                       |               |
| Review draft report sections                       |                                       |               |
| Advisory Report                                    | Chief Rapporteur, T.P. S              | mith          |
| Review draft report sections                       |                                       |               |
| Friday, June 25 9:00 AM                            |                                       |               |
| Consensus Summary of Assessments<br>Complete draft |                                       |               |
| Advisory Report on Stock Status<br>Complete draft  | · · · · · · · · · · · · · · · · · · · |               |



Figure 1. NAFO Divisions and principal geographic features of the Northeastern United States.

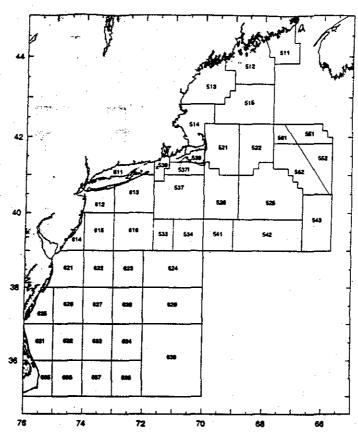



Figure 2. Three-digit statistical reporting areas off the Northeast United States.

| Table 5. | NEFSC Reference Docum<br>Workshop (16th SAW) | ents associated w | ith the 16th | Northeast Regional                                                                                                                                                                                                                  | Stock Assessment |
|----------|----------------------------------------------|-------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Number   | Title/Author(s)                              |                   |              | e de la constance de la constan<br>Regione de la constance de la co |                  |
| 000 00   |                                              |                   |              |                                                                                                                                                                                                                                     |                  |

| CRD 93-13 | Assessment of pollock, <i>Pollachius virens</i> , L., in Divisions 4VWX and Subareas 5 and 6, 1993<br>by R. K. Mayo and B. F. Figuerido                            |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CRD 93-14 | Assessment of Summer Flounder ( <i>Paralichthys dentatus</i> ), 1993: Report of the Stock Assessment<br>Workshop Summer Flounder Working Group<br>M. Terceiro, ed. |
| CRD 93-15 | Analytical assessment of the Atlantic herring coastal stock complex<br>by D. Stevenson, D. Libby, and K. Friedland                                                 |
| CRD 93-16 | Report of the Workshop on Atlantic Herring Science and Assessment in the Gulf of Maine/<br>Georges Bank Area                                                       |
| CRD 93-17 | <b>Evaluation</b> of available data for the development of overfishing definition for tilefish in the Middle<br>Atlantic<br>by G. Shepherd                         |
| CRD 93-18 | Report of the 16th Northeast Regional Stock Assessment Workshop (16th SAW). Stock Assessment<br>Review Committee (SARC) and Consensus Summary of Assessments       |
| CRD 93-19 | Report of the 16th Northeast Regional Stock Assessment Workshop (16th SAW), The Plenary                                                                            |
| CRD 93-20 | Calculating biological reference points for American lobsters<br>by J. Idoine and M. Fogarty                                                                       |
| CRD 93-21 | Assessment of American lobster stock status off the Northeast United States, 1993<br>S. Murawski, ed.                                                              |

Page 6

1. 1. 1930 - 1930 - 1930 - 1930 - 1930 - 1930 - 1930 - 1930 - 1930 - 1930 - 1930 - 1930 - 1930 - 1930 - 1930 - 19

# **TERMS OF REFERENCE**

The following terms of reference were addressed:

a. Evaluate estimation procedures for discards and recreational catches, and include these estimates in the catch at age matrix if appropriate (See section on the fishery on this page.)

b. Assess the status of pollock in Divisions 4VWX and SA5 through 1992 and perform bootstrap replications of the assessment to characterize the variability of the estimates. (See section on estimates of stock size and fishing mortality, page 16.)

c. Investigate the utility of incorporating additional age-disaggregated tuning indices in the ADAPT formulation. (See section on estimates of stock size and fishing mortality, page 16.)

- d. Revise estimates of  $F_{med}$ . (See section on biological reference points, page 22.)
- e. Provide catch and spawning stock biomass (SSB) options at various levels of F and F<sub>max</sub>, F<sub>20%</sub>, F<sub>sq</sub> and F<sub>92</sub>-10%. (See section on shortterm projections, page 27.)
- f. Evaluate gillnet sea sampling data for pollock as means of measuring CPUE. (See section on analyses of sink gillnet fishery effort measures page 32.)

### THE FISHERY

### **Commercial Landings**

Total landings for this stock have increased from about 9,000 mt annually during the late 1920s to an annual average of 38,000 mt during 1960-1966. Landings then declined to an average of 24,500 mt during 1967-1971, but increased to well over 65,000 mt in 1986 and 1987; the 1986 total (68,500 mt) was the highest on record. Total pollock landings have since declined to 42,431 mt by 1992 (Table A1, Figure A1). The general increase observed through the mid-1980s appears to reflect a general increase in directed effort associated with increased Canadian and U.S. harvesting capacity and declining abundance of traditional groundfish stocks.

For Canada, landings were relatively constant during 1928-1942, averaging about 5,000 mt, and then increased to an average of 29,300 mt during 1960-1964 (Table A1, Figure A1). Landings subsequently declined to only 10,800 mt in 1970, but increased to a peak of 45,300 mt in 1987. Canadian pollock landings have since declined to 33,146 mt by 1992. United States landings during 1935-1960 were relatively stable, about an annual average of 13,400 mt, and then decreased to less than 4,000 mt in the late 1960s. Landings increased steadily to an annual average of 18,000 mt during 1978-1987, reaching a maximum of 24,542 mt in 1986. (Table A1, Figure A1), United States pollock landings have since declined precipitously, reaching 7,183 mt by 1992.

Nominal catches by other nations have fluctuated considerably, increasing from zero in 1962 to 12,300 mt in 1966, and then declining sharply to only 1,500 mt in 1968. The combined total averaged 9,800 mt during 1970-1973, but declined to less than 1,000 mt annually between 1981 and 1987 (Table A1, Figure A1). Landings by distant water fleets have since increased to between 2,000 and 3,000 mt in 1991 and 1992.

The distribution of nominal catch by area is given in Table A2. Since 1960, 60% of the total has been taken on the western Scotian Shelf and in the Gulf of Maine (NAFO Divisions 4X and 5Y), the apparent center of distribution of this stock. More than 90% of the Canadian nominal catch has been taken on the Scotian Shelf; U.S. landings were taken primarily on Georges Bank and in the Gulf of Maine during the 1960s and early 1970s, but in more recent years have come primarily from the western Gulf of Maine.

Historically, most of the catch has been taken by bottom trawling; bottom trawls have remained the predominant gear in recent years in spite of a substantial increase in gill net effort by Canadian and U.S. fleets beginning in the mid-1970s. Since 1970, more than 70% of the nominal catch has been taken by bottom trawling, with most of the remainder (20%) being taken by gill nets.

### Discards

Some discarding of pollock is likely to have occurred in U.S. fisheries due to imposition of minimum size regulations, and in Canadian fisheries due to the cod-haddock-pollock (CHP) comTable A1. Commercial landings (mt) of pollock for Divisions 4VWX+5+6 for United States, Canada, and distant-water fleet (DWF)

| Year | Canada | USA   | FRG                | GDR  | Japan   | Spain        | USSR       | UK             | Others       | Total DWF | Total |
|------|--------|-------|--------------------|------|---------|--------------|------------|----------------|--------------|-----------|-------|
| 1960 | 29470  | 10132 | 0                  | . 0  | 0       | 783          | 0          | 0              | 1            | 784       | 40386 |
| 1961 | 26323  | 10265 | 0                  | · 0  | 0       | 982          | 0          | 0              | 1            | 983       | 37571 |
| 1962 | 31721  | 7391  | 0                  | · 0  | ď       | 0            | 0          | 0              | 0            | 0         | 39112 |
| 1963 | 28999  | 6650  | 126                | 0    | 0       | . 0          | 793        | 28             | 0            | 947       | 36596 |
| 1964 | 30007  | 6006  | 208                | 0    | 0       | 0            | 4603       | 374            | 55           | 5240      | 41253 |
| 1965 | 27316  | 5303  | 71                 | 0    | 0       | 1361         | 2667       | 11             | 0            | 4110      | 36729 |
| 1966 | 18271  | 3791  | 0                  | 0    | 0       | 2384         | 9865       | 12             | 0            | 12261     | 34323 |
| 1967 | 17567  | 3312  | , <sup>1</sup> . O | 0    | · • • • | 1779         | 644        | 1              | 14           | 2438      | 23317 |
| 1968 | 18062  | 3276  | 0                  | • 0  | 0       | 1128         | 372        | . 0            | 7            | 1507      | 22845 |
| 1969 | 15968  | 3943  | 1188               | 2195 | 0       | 1515         | 227        | <sup>1</sup> O | 7            | 5132      | 25043 |
| 1970 | 10753  | 3976  | 3233               | 4710 | 40      | 532          | 527        | 0              | 0            | 9042      | 23771 |
| 1971 | 11757  | 4890  | 633                | 6849 | 15      | 912          | 2216       | 0              | 3            | 10628     | 27275 |
| 1972 | 18022  | 5729  | 475                | 4816 | 8       | 616          | 3495       | 4              | <b>54</b>    | 9468      | 33219 |
| 1973 | 26990  | 6303  | 1124               | 948  | 1570    | 3113         | 3092       | 0              | 36           | 9883      | 43176 |
| 1974 | 24975  | 8726  | 149                | 2    | 40      | 1500         | 2348       | 48             | 14           | 4101      | 37802 |
| 1975 | 26548  | 9318  | 236                | 96   | 0       | 709          | 2004       | 0              | 124          | 3169      | 39035 |
| 1976 | 23568  | 10863 | 994                | 24   | 0       | 303          | 1466       | 0              | 390          | 3177      | 37608 |
| 1977 | 24654  | 13056 | 368                | 0    | 1       | 2            | 268        | 0              | 53           | 692       | 38402 |
| 1978 | 26801  | 17714 | 0                  | 0    | 110     | 0            | 502        | • 0            | 180          | 792       | 45307 |
| 1979 | 29967  | 15541 | 7                  | 0    | 19      | 0            | 1025       | 0              | 73           | 1124      | 46632 |
| 1980 | 35986  | 18280 | 0                  | 0    | 81      | 0            | <b>950</b> | 0              | 131          | 1162      | 55428 |
| 1981 | 40270  | 18171 | 0                  | 0    | 15      | 0            | 358        | 0              | 90           | 463       | 58904 |
| 1982 | 38029  | 14357 | 0                  | 0    | 3       | . • <b>O</b> | 297        | 0              | <b>128</b> . | 428       | 52814 |
| 1983 | 32749  | 13967 | .0                 | 0    | 6       | 0            | 226        | . 0            | 283          | 515       | 47231 |
| 1984 | 33465  | 17903 | 0                  | 1    | 1       | 0            | 97         | 0              | 169          | 268       | 51636 |
| 1985 | 43300  | 19457 | 0                  | 0    | 17      | 0            | 336        | 0              | 143          | 496       | 63253 |
| 1986 | 43249  | 24542 | 0                  | 0    | 51      | · 0          | 564        | Ó              | 468          | 1083      | 68874 |
| 1987 | 45330  | 20353 | · 0 · ·            | 0    | 82      | 0            | 314        | Ů Î            | 371          | 767       | 66450 |
| 1988 | 41831  | 14960 | 0                  | 0    | 1       | 0            | 1054       | 0              | 225          | . 1280    | 58071 |
| 1989 | 40976  | 10553 | . 0                | 0    | 28      | 0            | 1221       | 0              | 577          | 1826      | 53355 |
| 1990 | 36221  | 9645  | 0                  | 0    | 9       | 0            | 1052       | 0              | 264          | 1325      | 47191 |
| 1991 | 37936  | 7950  | 0                  | 0    | 38      | • • •        | 2690       | 0              | 626          | 3354      | 49240 |
| 1992 | 33146  | 7183  | 0                  | 0    | 72      | 0            | 1006       | 0              | 1024         | 2102      | 42431 |

Page 6

ł

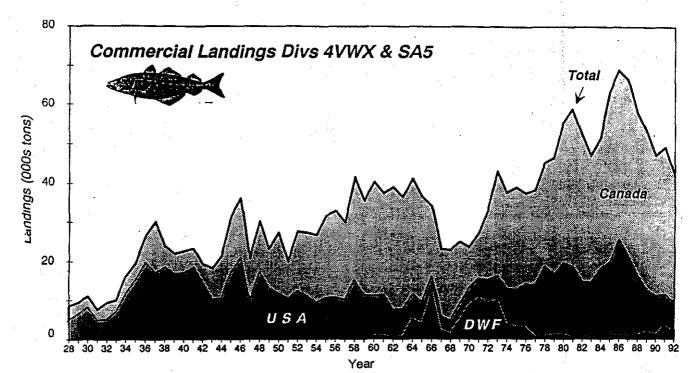



Figure A1. Commercial landings of Divisions 4VWX and Subareas 5 and 6 pollock (metric tons, live) for Canada, the United States (USA), and distant-water fleets (DFW), 1928 to 1992.

bined quota system imposed in the western Scotia-Fundy region in 1989 (Mohn *et al.* 1990). Any inclusion of discards in the catch-at-age would have to account for both of these potential sources of discarding. No analyses have yet been performed.

### **Recreational Catches**

### Catch Trends

Recreational catch estimates obtained for 1960, 1965, and 1970 totaled 4.3 million fish (9,800 mt), 3.8 million fish (4,200 mt), and 2.5 million fish (2,500 mt), respectively (Table A3). Estimates from Marine Recreational Fishery Statistics Surveys including pollock reportedly caught and released alive declined from a 1979-1980 average of 4.1 million fish to 0.6 million in 1984. Catches temporarily increased in 1985, to 2.1 million fish, before declining sharply to an average of 0.6 million in 1986-1987 (Table A3). Catches increased slightly in 1988 but have remained at less than 0.5 million since 1990. Total weight, however, increased from about 1,000 mt in 1979 to 2,800 mt in 1983 as mean size increased. Total weights declined substantially in 1984 and have

remained at less than 500 mt since 1990. Mean weights have remained in the range of 0.4 to 0.6 kg since 1984.

### Sampling Intensity

### Commercial Fishery Sampling Levels

Sampling of pollock catches was negligible between 1969 and 1976 when 10 or fewer samples were taken (and 1000 or fewer fish were measured) per year. Sampling intensity increased substantially in 1977 and, since then, sampling of the catch has been adequate to derive commercial catch-at-age estimates. Between 1977 and 1981 the sampling intensity ranged from 1 to 4 samples per ton landed; since 1982, the intensity has increased to between 4 and 9 samples per ton landed.

### **Recreational Fishery Sampling Levels**

Sampling of the recreational pollock catch has been relatively poor since 1979 when intercept sampling commenced (Table A3). During 1979-1982, between 300 and 600 pollock were measured from this fishery per year, but sampling Table A2. Commercial landings (mt) of pollock for Divisions 4VWX+5+6 for United States, Canada, and distant-water fleet (DWF)

| Гсаг | 4V    | 4W    | 4X    | Total<br>4VWX | 5Y    | 52e        | 52w  | Total<br>5Z | 5NK | Total<br>SA5 | SA6   | Total<br>4VWX+5 | Total<br>4VWX-6 |
|------|-------|-------|-------|---------------|-------|------------|------|-------------|-----|--------------|-------|-----------------|-----------------|
| 1960 | 1503  | 8354  | 20132 | 29989         | 6545  | 0          | 0    | 3834        | .18 | 10397        | 0     | 40386           | 40386           |
| 1961 | 1864  | 13167 | 14321 | 29352         | 5017  | 0          | 0    | 3177        | 25  | 8219         | 0     | 37571           | 37571           |
| 1962 | 1292  | 12045 | 19624 | 32961         | 2560  | <i>r</i> 0 | 0    | 3576        | 15  | 6151         | .0    | 39112           | 39112           |
| 1963 | 674   | 9152  | 20645 | 30471         | 2168  | 0          | 0    | 3947        | 10  | 6125         | 116   | 36596           | 36712           |
| 1964 | 474   | 12488 | 19283 | 32245         | 1754  | 0          | 0    | 7250        | 0   | 9004         | 4     | 41249           | 41253           |
| 1965 | 1205  | 13134 | 13390 | 27729         | 1933  | 0          | 0    | 7065        | 0   | 8998         | 2     | 36727           | 36729           |
| 1966 | 788   | 11040 | 12648 | 24476         | 953   | 0          | . 0  | 8846        | 0   | 9799         | 48    | 34275           | 34323           |
| 1967 | 657   | 5836  | 8290  | 14783         | 1728  | 0          | 0    | 6790        | 14  | 8532         | 2     | 23315           | 23317           |
| 1968 | 1013  | 5954  | 10656 | 17623         | 1416  | 3724       | 82   | 3806        | 0   | 5222         | 0     | 22845           | 22845           |
| 1969 | 300   | 3938  | 10983 | 15221         | 4635  | 5025       | 162  | 5187        | 0   | 9822         | 0     | 25043           | 25043           |
| 1970 | 649   | 2952  | 8194  | 11795         | 6281  | 5157       | 123  | 5280        | 0   | 11561        | 415   | 23356           | 23771           |
| 1971 | 531   | 1802  | 9739  | 12072         | 7016  | 7096       | 142  | 7238        | 58  | 14312        | 891   | 26384           | 27275           |
| 1972 | 597   | 3419  | 16190 | 20206         | 6419  | 6519       | 51   | 6570        | 0   | 12989        | 24    | 33195           | 33219           |
| 973  | 1004  | 5871  | 23225 | 30100         | 5202  | 6235       | 1618 | 7853        | 0   | 13055        | 21    | 43155           | 43176           |
| 1974 | 307   | 4740  | 20362 | 25409         | 6106  | 6233       | 5    | 6238        | 0   | 12344        | 49    | 37753           | 37802           |
| 1975 | 799   | 5697  | 18668 | 25164         | 6015  | 7848       | 3    | 7851        | 0   | 13866        | 5     | 39030           | 39035           |
| 1976 | 1102  | 3424  | 19700 | 24226         | 6441  | 6915       | 11   | 6926        | 12  | 13379        | 3     | 37605           | 37608           |
| 1977 | 1347  | 6082  | 14700 | 22129         | 8278  | 7846       | 79   | 7925        | 36  | 16239        | 34    | 38368           | 3840            |
| 1978 | 2931  | 4910  | 15161 | 23002         | 12238 | 9943       | 17   | 9960        | 91  | 22289        | 16    | 45291           | 45307           |
| 1979 | 4877  | 4963  | 18340 | 28180         | 9856  | 8356       | 11   | 8367        | 221 | 18444        | 8     | 46624           | 4663            |
| 1980 | 3893  | 7511  | 20485 | 31889         | 11388 | 11883      | 20   | 11903       | 245 | 23536        | . 3   | 55425           | 55428           |
| 1981 | 2316  | 15678 | 18842 | 36836         | 12475 | 9298       | 21   | 9319        | 247 | 22041        | 27    | 58877           | 58904           |
| 1982 | 2939  | 9373  | 21036 | 33348         | 9416  | 9903       | 15   | 9918        | 129 | 19463        | 3     | 52811           | 52814           |
| 1983 | 5491  | 5787  | 18137 | 29415         | 8458  | 9217       | 25   | 9242        | 113 | 17813        | 3     | 47228           | 4723            |
| 1984 | 5474  | 6043  | 19486 | 31003         | 12543 | 7819       | 28   | 7847        | 236 | 20626        | 7     | 51629           | 5163            |
| 1985 | 12085 | 3262  | 26837 | 42184         | 15615 | 5169       | 19   | 5188        | 261 | 21064        | 5     | 63248           | 63253           |
| 1986 | 15250 | 4046  | 23071 | 42367         | 18900 | 7387       | 14   | 7401        | 204 | 26505        | 2     | 68872           | 68874           |
| 1987 | 12820 | 4425  | 26858 | 44103         | 14841 | 7393       | 12   | 7405        | 101 | 22347        | 0     | 66450           | 6645            |
| 1988 | 11871 | 4240  | 24656 | 40767         | 11356 | 5942       | 5    | 5947        | • 0 | 17303        | 1     | 58070           | 5807            |
| 1989 | 12074 | 5598  | 23780 | 41452         | 7143  | 4752       | . 8  | 4760        | 0   | 11903        | 0     | 53355           | 5335            |
| 1990 | 8155  | 5257  | 22578 | 35990         | 6094  | 5011       | 9    | 5020        | 86  | 11200        | 1     | 47190           | 4719            |
| 1991 | 4072  | 9121  | 26447 | 39640         | 5320  | 4208       | 7    | 4215        | 64  | 9599         | · . 1 | 49239           | 4924            |
| 1992 | ÷     |       |       | 0             |       |            |      | 0           |     | 0            |       | 0               | 4243            |

<sup>1</sup> Totals are for all countries

Page 10

1

Table A3. United States catches of pollock (numbers and total weight), mean weights, and number of fish measured estimated from data collected in U.S. recreational fishery surveys, 1960-1992<sup>1</sup>

| Year . | Number                    | Weight        | Mean<br>Weight | Number<br>of<br>Fish |
|--------|---------------------------|---------------|----------------|----------------------|
|        | (thousands)               | (mt)          | (kg)           | Measured             |
| 1960   | 4,335                     | 9,834         | 2.27           | n/a                  |
| 1965   | 3,756                     | 4,240         | 1.13           | n/a                  |
| 1970   | 2,451                     | 2,533         | 1.03           | n/a                  |
| 1974   | 481                       | 496           | 1.03           | n/a                  |
| 1979   | 3,648                     | 1,021         | 0.28           | 348                  |
|        | <b>2,349</b> <sup>1</sup> | 658           |                |                      |
| 1980   | 4.446                     | 2,134         | 0.48           | 572                  |
|        | 1,997                     | 959           |                |                      |
| 1981   | 2,724                     | 1,226         | 0.45           | 376                  |
|        | 1,602                     | 721           |                | •                    |
| 1982   | 1,686                     | 2,563         | 1.52           | 375                  |
|        | 882                       | 1,341         |                |                      |
| 1983   | 1,314                     | <b>2,7</b> 99 | 2.13           | 146                  |
|        | 590                       | 1,257         |                |                      |
| 1984.  | 642                       | 276           | 0.43           | 171                  |
|        | 405                       | 174           |                |                      |
| 1985   | 2,147                     | 862           | 0.40           | 89                   |
|        | 1,860                     | 747           |                |                      |
| 1986   | 447                       | 219           | 0.49           | 121                  |
|        | 359                       | 176           |                |                      |
| 1987   | 664                       | 269           | 0.40           | 131                  |
|        | 264                       | 107           |                |                      |
| 1988   | 1,421                     | 542           | 0.38           | 192                  |
|        | 490                       | 198           |                |                      |
| 1989   | 670                       | 696           | 1.04           | 138                  |
|        | 306                       | 401           |                |                      |
| 1990   | 404                       | 171           | 0.42           | 46                   |
|        | 223                       | 94            |                |                      |
| 1991   | 458                       | 289           | 0.63           | 42                   |
|        | 106                       | 79            |                |                      |
| 992    | 185                       | 84            | 0.49           | 56                   |
|        | 91                        | 40            |                |                      |

Numbers in italics exclude data for pollock caught and released alive; weights calculated by multiplying numbers caught by mean weight of pollock available for identification in intercept (creel) survey work. declined sharply thereafter to fewer than 100 measurements per year since 1989.

### **Commercial Catch at Age**

The combined catch, mean weight, and total weight at age matrices for all countries and gear types are presented in Table A4. Canadian and U.S. catches by number have been dominated by age 3 to age 7 fish throughout the series, although considerable interannual variability is evident as dominant year classes progress through the fishery. Landings by Canada and the U.S. have been supported by the same dominant year classes (1971, 1976, 1979, 1982, and 1985, 1987), and catches of the 1969, 1974, and 1980 and 1988 year classes have also been reasonably high. The lack of age 2 fish in the U.S. catch-at-age since 1988 likely reflects the imposition of a minimum landing size of 48 cm, which corresponds to the size of a pollock at the beginning of its third year (Mayo et al. 1989). The total weight over all ages represents a sum of products that compares favorably with total annual landings listed in Table A1. In most years, sums of products are within 1% of the tabulated landings.

### **Commercial Mean Weights at Age**

Mean weights at age are given for the combined catch-at-age in Table A4. Combined mean weights-at-age represent averages taken over the three fleet components weighted by numbers landed on an annual basis. Catch biomass estimates are computed as the product of numbersat-age times mean weights-at-age. Mean weightsat-age for Canada during 1977-1987 appear to be slightly lower at a given age than the U.S. weights, particularly at the intermediate ages. This is likely due to the different length-weight relationships employed in the computations and the different areas fished by each country. Canadian mean weights in 1991 and 1992 for oldest ages are extremely low relative to earlier years. Since the overall mean weight at age matrix (Table A4) is dominated by Canadian catches, a similar decline is evident in the oldest age groups in the last two to three years.

. . .

Table A4. Total catch at age for pollock in Divisions 4VWX and SA 5 for all countries combined

|      |         |      |              |              |      | housand      |              | The second |            |      |      |               |
|------|---------|------|--------------|--------------|------|--------------|--------------|------------|------------|------|------|---------------|
| Year | 2       | 3    | 4            | 5            | 6    | 7            | 8            | 9          | 10         | 11   | 12+  | Tota          |
| 1970 | 567     | 589  | 1543         | 1360         | 892  | 686          | 464          | 212        | 123        | 44   | 8    | 6488          |
| 1971 | 1518    | 2428 | 2392         | 2001         | 1575 | 541          | 232          | 3          | ີ 8        | 1    | เ    | 10700         |
| 1972 | 798     | 2170 | 2655         | 1852         | 924  | 483          | 110          | 355        | 26         | 60   | 85   | 9518          |
| 1973 | 1168    | 2696 | 9131         | 5279         | 723  | 289          | 103          | 256        | 87         | 15   | 5    | 19752         |
| 1974 | 261     | 7332 | 3445         | 3034         | 1359 | 404          | 213          | 96         | 100        | 81   | 45   | 16370         |
| 1975 | 260     | 1436 | 5297         | 2566         | 2400 | 1041         | 263          | 80         | 85         | 56   | 49   | 13533         |
| 1976 | 234     | 2190 | 3085         | 5314         | 1454 | 1342         | 272          | 41         | 15         | 21   | 57   | 14025         |
| 1977 | 56      | 1751 | 3779         | 2443         | 2980 | 1049         | 673          | 206        | 81         | 45   | 274  | 13337         |
| 1978 | 115     | 1548 | 3618         | 3682         | 1887 | 2084         | 602          | 411        | 151        | 103  | 229  | 14430         |
| 1979 | 299     | 4087 | 7487         | 4478         | 2184 | 765          | 531          | 160        | 62         | 39   | 112  | <b>2</b> 0204 |
| 1980 | 361     | 704  | 3798         | 6802         | 4096 | 1605         | 469          | 334        | 110        | 45   | 78   | 18402         |
| 1981 | 1465    | 2750 | 1303         | 3853         | 4691 | 2749         | 955          | 301        | 268        | 63   | 148  | 18546         |
| 1982 | 236     | 5104 | 2249         | 847          | 2600 | 2622         | 1344         | 553        | 264        | 180  | 218  | 16217         |
| 1983 | 83      | 2743 | 11227        | 1867         | 422  | 868          | 980          | 540        | 277        | 131  | 262  | 19400         |
| 1984 | 128     | 1278 | 5183         | 9770         | 1249 | 203          | 368          | 325        | 193        | 59   | 137  | 18893         |
| 1985 | 235     | 2345 | 2871         | 5812         | 8035 | 1394         | 213          | 238        | 353        | 137  | 177  | 21810         |
| 1986 | 114     | 1578 | 6169         | 4443         | 5207 | 4482         | 477          | 139        | 263        | 259  | 250  | 23381         |
| 1987 | 92      | 1424 | 3121         | 7631         | 4088 | 3046         | 2152         | 272        | 82         | 147  | 260  | 22315         |
| 1988 | 27      | 1046 | 3478         | 4145         | 5017 | 2304         | 1445         | 1164       | 69         | 40   | 174  | 18909         |
| 1989 | 72      | 721  | 5626         | 4728         | 2825 | 2304<br>2473 | 1072         | 752        | 451        | 33   | 83   | 18836         |
| 1990 | 51      | 1830 | 3043         | 5131         | 2921 | 1751         | 997          | 612        | 431<br>295 | 125  | 102  | 16858         |
| 1991 | 300     | 1570 | 4443         | 3754         | 4602 | 1843         | 858          |            |            |      |      |               |
| 1991 | 30      | 2055 | 4443<br>5363 | 3754<br>4063 |      | 1643         | 505          | 418        | 321        | 205  | 282  | 18596         |
| 1992 | 50      | 2000 | 5505         | 4003         | 2166 | 1430         | 505          | 261        | 200        | 96   | 88   | 16257         |
|      | <b></b> |      | <u> </u>     |              |      | veights (    |              |            |            |      |      |               |
| Year | 2       | 3    | 4            | 5            | 6    | 7            | 8            | 9          | 10         | 11   | 12+  | Mean          |
| 1970 | 0.59    | 1.38 | 2.19         | 3.05         | 3.78 | 4.78         | 5.82         | 7.08       | 7.10       | 9.09 | 8.11 | 3.21          |
| 1971 | 0.78    | 1.70 | 2.12         | 3.16         | 4.00 | 4.99         | 6.24         | 7.25       | 9.62       | 0.00 | 0.00 | 2.55          |
| 1972 | 1.06    | 1.86 | 2.77         | 4.28         | 5.29 | 5.95         | 6.52         | 8.83       | 7.60       | 6.81 | 9.56 | 3.49          |
| 1973 | 0.50    | 1.27 | 1.95         | 2.65         | 3.96 | 4.86         | 6.23         | 6.81       | 7.42       | 9.17 | 9.77 | 2.19          |
| 1974 | 0.82    | 1.40 | 1.96         | 3.01         | 4.09 | 5.06         | 6.12         | 6.66       | 7.36       | 8.52 | 9.95 | 2.31          |
| 1975 | 0.86    | 1.28 | 1.99         | 3.07         | 3.85 | 5.09         | 6.52         | 7.51       | 7.65       | 8.47 | 9.99 | 2.88          |
| 1976 | 0.60    | 1.23 | 1.91         | 2.77         | 3.69 | 4.61         | 5.55         | 7.00       | 7.72       | 8.54 | 9.23 | 2.68          |
| 1977 | 0.83    | 1.13 | 1.60         | 2.61         | 3.53 | 4.56         | 5.67         | 6.81       | 7.06       | 8.79 | 9.06 | 2.88          |
| 978  | 0.84    | 1.23 | 1.80         | 2.68         | 3.95 | 4.62         | 5.79         | 6.59       | 6.77       | 7.58 | 7.93 | 3.14          |
| 979  | 0.73    | 1.19 | 1.64         | 2.00         | 3.53 | 4.65         | 5.65         | 6.75       | 7.47       | 8.18 | 8.31 | 2.31          |
| 980  | 0.95    |      |              | 2.72         | 3.51 | 4.05         | 5.65<br>5.65 | 6.48       | 7.72       | 7.87 | 8.84 | 3.02          |
| .981 | 0.64    | 1.47 | 2.48         | 2.95         | 3.43 |              |              |            |            |      |      |               |
| 982  |         |      |              |              |      | 4.38         | 5.84         | 6.72       | 7.44       | 7.70 | 8.23 | 3.18          |
|      | 0.59    | 1.12 | 2.55         | 3.50         | 4.15 | 4.51         | 5.28         | 6.22       | 7.34       | 7.79 | 8.27 | 3.26          |
| .983 | 0.77    | 1.16 | 1.66         | 3.06         | 4.16 | 4.88         | 5.18         | 6.02       | 6.72       | 7.71 | 8.86 | 2.43          |
| 984  | 0.76    | 1.46 | 2.15         | 2.63         | 3.51 | 5.15         | 5.75         | 5.99       | 6.52       | 7.53 | 8.52 | 2.71          |
| 985  | 0.71    | 1.05 | 1.93         | 2.75         | 3.23 | 3.74         | 5.14         | 6.36       | 6.33       | 6.62 | 8.59 | 2.87          |
| 986  | 0.57    | 1.13 | 1.84         | 2.59         | 3.40 | 3.85         | 4.87         | 6.26       | 6.84       | 6.71 | 8.05 | 2.93          |
| .987 | 0.72    | 1.13 | 1.95         | 2.58         | 3.04 | 3.88         | 4.28         | 5.19       | 7.13       | 7.34 | 8.44 | <b>2.9</b> 6  |
| 988  | 1.17    | 1.31 | 1.84         | 2.66         | 3.28 | 3.61         | 4.40         | 4.65       | 5.96       | 8.11 | 8.78 | 3.05          |
| 989  | 0.68    | 1.21 | 1.74         | 2.52         | 3.31 | 3.90         | 4.26         | 4.96       | 5.35       | 7.39 | 8.69 | 2.83          |
| 990  | 0.49    | 1.22 | 1.89         | 2.56         | 3.03 | 3.93         | 4.29         | 5.04       | 5.35       | 6.51 | 8.48 | 2.82          |
| 991  | 0.47    | 0.97 | 1.68         | 2.32         | 2.92 | 3.47         | 3.96         | 4.84       | 5.00       | 5.27 | 6.79 | 2.56          |
| 992  | 0.47    | 1.04 | 1.69         | 2.55         |      |              |              |            |            |      |      |               |

an ann an guirt

S. 199

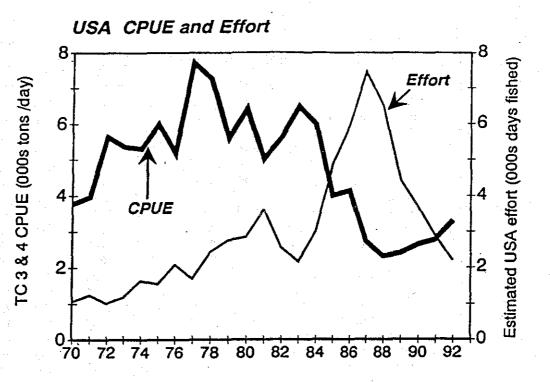
|        |      |       |       | 1     | Weight | t (mt) lan | ded at a | ge   |       |      | ę    |       |
|--------|------|-------|-------|-------|--------|------------|----------|------|-------|------|------|-------|
| Year   | 2    | 3     | • 4   | 5     | 6      | 7          | .8       | 9    | 10    | 11   | 12+  | Total |
| 1970   | 334  | 812   | 3373  | 4154  | 3371   | 3277       | 2699     | 1501 | 873   | 400  | 65   | 20859 |
| 1971   | 1190 | 4131  | 5078  | 6318  | 6300   | 2702       | 1448     | 22   | 77    | · 0  | 0    | 27265 |
| 1972   | 846  | 4036  | 7356  | 7928  | 4888   | 2874       | 717      | 3133 | 198   | 409  | 813  | 33197 |
| 1973   | 584  | 3413  | 17764 | 13980 | 2864   | 1404       | 642      | 1745 | 646   | 138  | 49   | 43228 |
| 1974   | 215  | 10231 | 6741  | 9133  | 5555   | 2044       | 1303     | 639  | 736   | 690  | 448  | 37734 |
| 1975   | 223  | 1841  | 10545 | 7868  | 9246   | 5300       | 1714     | 601  | 650   | 474  | 490  | 38952 |
| 1976   | 140  | 2694  | 5881  | 14698 | 5364   | 6184       | 1508     | 287  | . 116 | 179  | 526  | 37578 |
| 1977   | 47   | 1986  | 6058  | 6366  | 10521  | 4780       | 3816     | 1402 | 572   | 396  | 2482 | 38426 |
| 1978   | 97   | 1908  | 6519  | 9866  | 7459   | 9637       | 3488     | 2708 | 1022  | 781  | 1816 | 45300 |
| 1979   | 218  | 4850  | 12277 | 12194 | 7710   | 3560       | 3002     | 1079 | 463   | 319  | 931  | 46603 |
| 1980   | 343  | 980   | 7417  | 18927 | 14374  | 6752       | 2651     | 2164 | 850   | 354  | 690  | 55501 |
| 1981   | 940  | 4033  | 3238  | 11361 | 16087  | 12051      | 5575     | 2023 | 1994  | 485  | 1218 | 59004 |
| 1982   | 140  | 5698  | 5743  | 2967  | 10791  | 11830      | 7094     | 3441 | 1937  | 1402 | 1803 | 52847 |
| 1983   | 64   | 3178  | 18669 | 5720  | 1754   | 4236       | 5080     | 3251 | 1861  | 1010 | 2322 | 47144 |
| 1984   | 97   | 1860  | 11154 | 25731 | 4386   | 1045       | 2117     | 1946 | 1258  | 444  | 1167 | 51205 |
| 1985   | 168  | 2457  | 5539  | 16011 | 25957  | 5220       | 1095     | 1513 | 2233  | 907  | 1521 | 62621 |
| 1986   | 66   | 1783  | 11370 | 11485 | 17726  | 17244      | 2323     | 871  | 1799  | 1739 | 2013 | 68419 |
| 1987   | 66   | 1612  | 6081  | 19670 | 12435  | 11813      | 9212     | 1413 | 584   | 1079 | 2195 | 66160 |
| 1988 - | 32   | 1367  | 6409  | 11023 | 16440  | 8311       | 6359     | 5416 | 412   | 324  | 1528 | 57621 |
| 1989   | 49   | 874   | 9788  | 11936 | 9346   | 9656       | 4567     | 3734 | 2414  | 244  | 721  | 53330 |
| 1990   | 25   | 2238  | 5753  | 13147 | 8853   | 6873       | 4273     | 3086 | 1580  | 814  | 865  | 47506 |
| 1991   | 141  | 1517  | 7447  | 8723  | 13436  | 6387       | 3398     | 2024 | 1606  | 1081 | 1915 | 47677 |
| 1992   | 14   | 2138  | 9039  | 10348 | 7341   | 5659       | 2279     | 1331 | 1164  | 596  | 707  | 40615 |

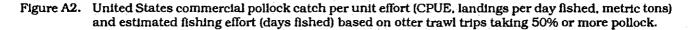
# STOCK ABUNDANCE AND BIOMASS INDICES

### **Commercial Landings per Unit Effort**

Commercial CPUE indices were calculated for U.S. tonnage class (TC) 3 and 4 side and stern trawlers (tons landed per day fished), and Canadian TC 5 stern trawlers (tons landed per hour fished) using 1970-1992 landings and effort data from trips in which pollock constituted 50% or more of the total landed weight or were recorded as the main species for the trip.

United States indices increased between 1970 and 1977, declined slightly between 1977 and 1984, then dropped sharply from 1985 through 1988 (Figure A2). Indices have since increased \*slightly but the average CPUE in 1990-1992 remains at about half the level observed in 1983 and 1984.


The Canadian regional catch rate series reflects the same general trend, *i.e.*, an increase in CPUE from the early 1970s through the early 1980s, followed by a decline in recent years. The Canadian regional series, however, has exhibited considerable interannual variability since the early 1980s, a possible result of trip limits and other regulatory measures imposed since 1983 (Annand *et al.* 1988). The International Observer Program (IOP) CPUE series more closely matches the U.S. CPUE series indicating a steady decline since 1986 (Figure A3).


### **Research Vessel Survey Indices**

Pollock abundance and biomass indices exhibit considerable interannual variability due to schooling behavior and changes in spatial distribution patterns. Retransformed biomass indices derived from NEFSC surveys are more variable over time than retransformed abundance indices, although results from both spring and autumn surveys indicate a gradual increase in biomass through the mid-1970s, followed by a sharp decline (Figure A4a, A4b). The autumn series has remained relatively low through 1992, while spring indices suggest a recent increase in biomass in 1991 and 1992.

Canadian summer survey indices suggest that abundance remained relatively stable between







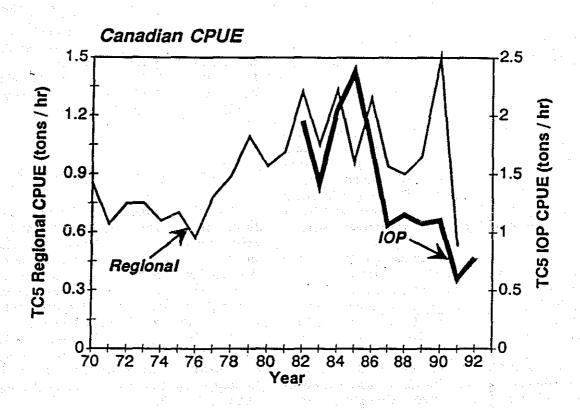
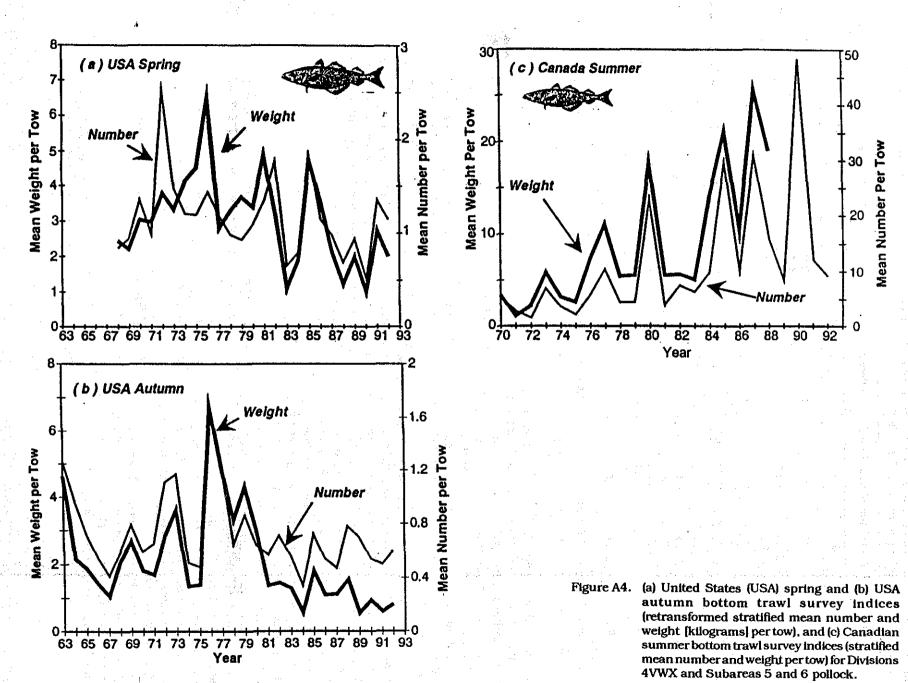




Figure A3. Canadian commercial pollock catch per unit effort (CPUE, landings per hour fished, metric tons) based on trip data and International Observer Program (IOP) logbooks.



Page 15

Stratified Mean Year Stratified Mean Number per Tow at Age Total Weight Per Tow 1 3+ 0 2 (kg) 1978 2.07 0.01 0.13 0.06 2.270.11 1979 0.04 0.06 4.45 0.07 4.34 0.01 0.72 1980 0.30 8.37 0.20 0.028.89 1981 1.521.42 0.00 4.34 0.54 1.40 0.00 0.06 0.00 1.85 0.03 1982 1.79 0.03 6.45 0.04 6.79 0.68 1983 0.27 1984 0.04 0.00 0.02 0.00 0.060.01 1985 0.88 0.020.03 0.00 0.93 0.04 0.00 0.23 <0.01 1986 0.220.01 0.00 0.00 1987 0.23 0.01 0.03 0.27 0.02 1988 0.02 0.00 0.06 0.03 0.11 0.05 1989 0.01 0.36 0.45 0.201.02 0.34 1990 0.01 0.00 0.10 0.01 0.12 0.05 1991 0.00 0.00 0.02 0.03 0.05 0.03 1992 0.09 0.04 0.14 0.01 0.280.05

Table A5. Stratified mean catch per tow in numbers and weight (kilograms) for pollock in Massachusetts inshore spring surveys, 1978-1992<sup>1</sup>

<sup>1</sup> Inshore surveys for Regions 1-5 (strata 11-21 and 25-36) (See Figure 4 and Howe et al. 1979).

1970 and 1983 except for a sharp increase in 1980 (Figure A4c). Canadian abundance and biomass indices increased in 1984 and but have fluctuated considerably since then. The 1991 and 1992 indices suggest only moderate to low levels of abundance on the Scotian Shelf.

Much of the variation in U.S. and Canadian offshore survey abundance indices may be explained by differences in year class strength. Peak abundance levels evident from NEFSC spring surveys in 1972, 1976, and 1982, and from NEFSC autumn surveys in 1972-1973 and 1976-1977 were due to recruitment of strong 1970, 1971, 1975, and 1979 year classes to offshore survey areas. Biomass indices are affected by recruitment and growth. Increases in NEFSC spring biomass indices during 1973-1975 and 1977-1981 resulted from growth in weight of individual fish from the 1971 and 1975 year classes. Relative strengths of dominant year classes derived from Canadian and USA bottom trawl surveys are consistent with commercial catch-at-age data. No relatively strong year classes are evident in the last two to three years in either survey series.

- Indices from Massachusetts DMF surveys fluctuate considerably, but results for individual year classes appear to track incoming recruitment reasonably well (Table A5).

# MORTALITY

### Total Mortality

Research vessel catch per tow at age data available from U.S. and Canadian bottom trawl surveys have been analyzed on a cohort basis by Mayo *et al.* (1989) to estimate total instantaneous mortality (Z). These results suggest a general increase in Z on year classes prevalent during the mid-1980s compared to those that predominated in the 1970s. No further analyses of these data have been conducted.

### Natural Mortality

As in previous Canadian and U.S. pollock assessments, M is assumed to equal 0.2.

# ESTIMATES OF STOCK SIZE AND FISHING MORTALITY

# Virtual Population Analysis (VPA) Calibration

The ADAPT framework (Parrack 1986; Gavaris 1988; Conser and Powers 1990) was used to

Table A6.Estimates of instantaneous fishing mortality estimated from virtual population analysis (VPA) calibrated using the ADAPT procedure, 1970-1992

|         |          |        |        |        |        |        |        | -1.1   |        |        |        | •             |        |        |        |        |        |        |
|---------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|--------|--------|--------|--------|--------|--------|
| <u></u> | 1970     | 1971   | 1972   | 1973   | 1974   | 1975   | 1976   | 1977   | 1978   | 1979   | 1980   | 1981          | 1982   | 1983   | 1984   | 1985   | 1986   | 1987   |
| 2       | 0.0217   | 0.0414 | 0.0336 | 0.0252 | 0.0111 | 0.0079 | 0.0056 | 0.0011 | 0.0037 | 0.0365 | 0.0178 | 0.0168        | 0.0044 | 0.0022 | 0.0025 | 0.0078 | 0.0038 | 0.0025 |
| 3       | 0.0564   | 0.1221 | 0.0767 | 0.1521 | 0.2176 | 0.0777 | 0.0855 | 0.0524 | 0.0364 | 0.1737 | 0.1129 | <b>Ó.1825</b> | 0.0748 | 0.0654 | 0.0421 | 0.0580 | 0.0662 | 0.0595 |
| 4       | 0.2455   | 0.3392 | 0.1904 | 0.5276 | 0.2962 | 0.2414 | 0.2384 | 0.2085 | 0.1458 | 0.2471 | 0.2424 | 0.3150        | 0.2232 | 0.2340 | 0.1695 | 0.1255 | 0.2132 | 0.1807 |
| 5       | 0.3301   | 0.5810 | 0.4811 | 0.7122 | 0.3313 | 0.3763 | 0.4073 | 0.3016 | 0.3228 | 0.2708 | 0.3726 | 0.4154        | 0.3481 | 0.2924 | 0.3288 | 0.2917 | 0.2912 | 0.4448 |
| 6       | 0.3887   | 0.8056 | 0.5876 | 0.3490 | 0.3953 | 0.4772 | 0.3802 | 0.4222 | 0.4036 | 0.3230 | 0.4270 | 0.4786        | 0.5525 | 0.2922 | 0.3251 | 0.4960 | 0.4630 | 0.4660 |
| 7       | 0.3718   | 0.4337 | 0.6230 | 0.3645 | 0.3355 | 0.6044 | 0.5406 | 0.5235 | 0.5954 | 0.2826 | 0,4189 | 0.5737        | 0.5431 | 0.3577 | 0.2224 | 0.7417 | 0.5754 | 0.5459 |
| 8       | 1.5197   | 0.2058 | 0.1448 | 0.2551 | 0.5041 | 0.3812 | 0.3078 | 0.5785 | 0.6582 | 0.2921 | 0.2805 | 0.4751        | 0.6213 | 0.3994 | 0.2519 | 0.3845 | 0.6153 | 0.6092 |
| 9       | 0.5922   | 0.0286 | 0.5571 | 0.5852 | 0.4018 | 0.3577 | 0.0925 | 0.4056 | 0.8777 | 0.3600 | 0.3019 | 0.2927        | 0.5623 | 0.5493 | 0.2217 | 0.2566 | 0.4679 | 0.8970 |
| 10      | 3.2804   | 0.0379 | 0.3670 | 0.2525 | 0.4771 | 0.7652 | 0.1037 | 0.2664 | 0.5939 | 0.2997 | 0.4524 | 0.4237        | 0.4530 | 0.6194 | 0.3851 | 0.3994 | 0.5022 | 0.5620 |
| 11      | 0.5815   | 0.2931 | 0.4375 | 0.3746 | 0.3955 | 0.5416 | 0.4260 | 0.5112 | 0.6427 | 0.2955 | 0.3708 | 0.5112        | 0.5671 | 0.4267 | 0.2525 | 0.5230 | 0.5798 | 0.5894 |
| 12+     | 0.5815   | 0.2931 | 0.4375 | 0.3746 | 0.3955 | 0.5416 | 0.4260 | 0.5112 | 0.6427 | 0.2955 | 0.3708 | 0.5112        | 0.5671 | 0.4267 | 0.2525 | 0.5230 | 0.5798 | 0.5894 |
| 6+(w    | /)0.5671 | 0.5421 | 0.5092 | 0.3637 | 0.3949 | 0.5006 | 0.4084 | 0.4544 | 0.5328 | 0.3102 | 0.4031 | 0.4929        | 0.5574 | 0.4030 | 0.2861 | 0.5049 | 0.5152 | 0.5298 |
| 6+(u    | 1.1224   | 0.3008 | 0.4528 | 0.3635 | 0.4182 | 0.5212 | 0.3085 | 0.4512 | 0.6286 | 0.3088 | 0.3752 | 0.4592        | 0.5499 | 0.4408 | 0.2765 | 0.4669 | 0.5340 | 0.6116 |
| 7+(u    | ) 1.3911 | 0.1988 | 0.4258 | 0,3664 | 0.4228 | 0.5300 | 0.2942 | 0.4570 | 0.6736 | 0.3060 | 0.3648 | 0.4553        | 0.5493 | 0.4705 | 0.2668 | 0.4610 | 0.5482 | 0.6407 |

|            | 1988                                         | 1989   | 1990   | 1991   | 1992   |                   | , † .<br>{   | GM F<br>1988-91 | Partial<br>Recruitment                                                                                          |
|------------|----------------------------------------------|--------|--------|--------|--------|-------------------|--------------|-----------------|-----------------------------------------------------------------------------------------------------------------|
| 2          | 0.0011                                       | 0.0016 | 0.0009 | 0.0108 | 0.0006 |                   |              | 0.0020          | 0.0029                                                                                                          |
| 3          | 0.0348                                       | 0.0360 | 0.0518 | 0.0350 | 0.0952 |                   | •            | 0.0388          | 0.0565                                                                                                          |
| 4          | 0.2018                                       | 0.2647 | 0.2094 | 0.1717 | 0.1611 |                   |              | 0.2093          | 0.3048                                                                                                          |
| 5          | 0.3875                                       | 0.4640 | 0.4119 | 0.4322 | 0.2348 |                   |              | 0.4230          | 0.6160                                                                                                          |
| 6          | 0.5975                                       | 0.5009 | 0.5898 | 0.8174 | 0.4797 | · · ·             |              | 0.6163          | 0.8974                                                                                                          |
| 7          | 0.5393                                       | 0.6777 | 0.6776 | 0.9657 | 0.6538 | 18 d.             | 2 - A        | 0.6993          | 1.0183                                                                                                          |
| <b>3</b> . | 0.5461                                       | 0.5212 | 0.6487 | 0.8676 | 0.7860 | · ·               | e 15.        | 0.6363          | 0.9266                                                                                                          |
| э          | 0.8080                                       | 0.6195 | 0.6481 | 0.6303 | 0.7199 |                   |              | 0.6725          | 0.9793                                                                                                          |
| 10         | 0.5977                                       | 0.8877 | 0.5295 | 0.8775 | 0.7199 |                   |              | 0.7046          | 1.0260                                                                                                          |
| 11         | 0.5966                                       | 0.6498 | 0.6615 | 0.8979 | 0.7199 |                   |              | 0.6927          | 1.0087                                                                                                          |
| 12+-       | 0.5966                                       | 0.6498 | 0.6615 | 0.8979 | 0.7199 |                   | 1 - E<br>- E | 0.6927          | 1.0087                                                                                                          |
|            | <u>`                                    </u> |        |        |        |        | ч. <sup>1</sup> . |              | ·               |                                                                                                                 |
| 6+(w       | 0.5950                                       | 0.5842 | 0.6234 | 0.8456 | 0.5793 |                   |              |                 |                                                                                                                 |
| 6+(u       | )0.6142                                      | 0.6428 | 0.6259 | 0.8427 | 0.6799 |                   |              |                 |                                                                                                                 |
|            | 11                                           |        |        |        |        | 1                 | · .          | 12              | a di serie d |

1

7+(u) 0.6175 0.6711 0.6331 0.8477

0.6867 1.0000

Page 17

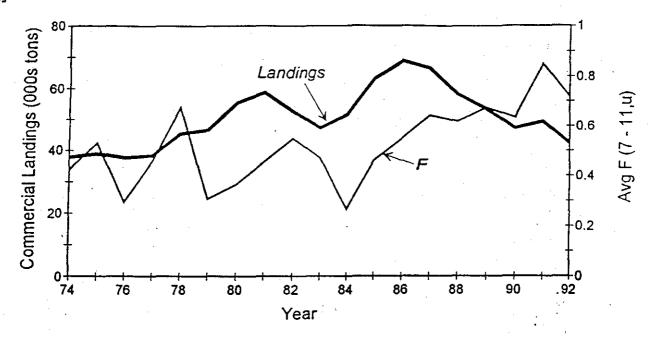



Figure A5. Trends in commercial landings (metric tons, live) and fishing mortality (F) for Divisions 4VWX and Subareas 5 an 6 pollock.

calibrate VPA stock sizes and derive estimates of terminal F values in 1992. The total stock catchat-age (Table A4) was provided to the VPA with true ages 2 to 11 and a 12+ group represented from 1970 to 1992. Calibration of the VPA, however, was carried out only on data from 1974 to 1992 due to the poor quality of the catch-at-age estimates from 1970 to 1973 (Mayo et al. 1989). The initial formulation employed 35 age-specific indices including: U.S. spring and autumn and Canadian summer bottom trawl survey indices for ages 2 to 10; Massachusetts DMF spring bottom trawl survey indices for ages 1 to 3; and U.S. commercial otter trawl CPUE for ages 4 to 8 as in the previous assessment (NEFC 1989). All indices received equal weight. The U.S. autumn survey was lagged by one year and age to equate autumn abundance of a given cohort with corresponding January 1 stock sizes of the following year. Canadian summer survey and U.S. commercial CPUE indices were related to corresponding mid-year stock sizes. A flat-topped partial recruitment vector was employed with full recruitment on age 7 and older as indicated from a separable VPA (Pope and Shepherd 1982) on the 1981-1992 catch-at-age data.

The ADAPT formulation employed in the VPA calibration provided direct estimates of F on ages 2 through 8 in 1992. Since the age at full recruitment was defined as 7 years in the input partial recruitment vector, F's on ages 9 to 11 were estimated as the mean of fully recruited ages 7 and 8 in the terminal year. In all years

prior to the terminal year, F on the oldest true age (11) was determined from weighted estimates of Z for ages 7 to 11. In all years, the age 11 F was applied to the 12+ group.

Several preliminary trials were attempted to estimate 1993 stock sizes at ages ranging from 2 to 10. Stock size estimates for ages 2 and 10 were in all cases non significant. A subsequent calibration was performed including only ages 3 through 9 with all indices receiving equal weight. Coefficients of variation (CVs) on the stock size estimates ranged from 37% (age 5) to 52% (age 3). Coefficients of variation on the estimated qs ranged from 26 to 30% except for the Massachusetts DMF surveys which ranged from 31 to 38%.

Additional indices were included in the final formulation by expanding the U.S. commercial CPUE to include ages 4 through 9, adding Canadian tonnage class 5 CPUE indices for ages 4 through 9 and adding age-aggregated commercial CPUE indices for U.S. and Canadian otter trawl fleets. Forty-four indices were included in final calibrations. High residuals in the U.S. autumn age 2 and Massachusetts spring age 1 indices were reduced by eliminating the terminal year index for these ages. Coefficients of variation on the age 3 through 9 stock size estimates were reduced from the original formulation, ranging from 29% (age 5) to 48% (age 9). Coefficients of variation on the estimated qs ranged from 21 to 31%. Correlations among parameters and indices were generally quite low with most values between 0.05 and 0.10.

 Table A7.
 Estimates of beginning year stock sizes estimated from virtual population analysis (VPA) calibrated using the ADAPT proceedure, 1970-1992

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 1970           9149.049           875.564           834.904           8346.433           8061.201           2441.674           656.405           524.285           141.249           10.280           19.826           141.045           5935.095           1980           2647.299           287.223           9497.488 | 1971<br>41327.662<br>23352.180<br>9189.941<br>5018.513<br>3146.710<br>1699.184<br>1378.355<br>117.575<br>237.423<br>4.350<br>4.322<br>85471.892<br>6583.597<br>1981<br>97229.724<br>18215.394<br>5329.268<br>12526.620<br>13630.449 | 1972<br>26676.482<br>32462.685<br>16922.203<br>5359.716<br>2298.231<br>1151.189<br>901.657<br>918.579<br>93.548<br>187.147<br>262.772<br>86971.436<br>5550.351<br>1982<br>58770.705<br>78279.378<br>12425.200<br>3184.233<br>6769.591 | 1973<br>51905.483<br>21118.796<br>24614.701<br>11452.384<br>2712.405<br>1045.563<br>505.478<br>638.682<br>430.852<br>53.065<br>17.549<br>114477.409<br>5386.044<br>1983<br>41961.183<br>47903.842<br>59471.444<br>8137.914 | 1974<br>26209.027<br>41439.765<br>14851.166<br>11890.742<br>4599.783<br>1566.532<br>594.536<br>320.652<br>291.271<br>274.031<br>150.993<br>102037.504<br>7646.804<br>1984<br>56278.771<br>34279.809<br>36738.380 | 1975<br>36348.721<br>21221.974<br>27293.742<br>9041.941<br>6990.040<br>2536.309<br>917.014<br>294.035<br>175.663<br>147.988<br>128.122<br>104967.428<br>11061.049<br>1985<br>33518.607<br>45961.342<br>26909.552 | 1976<br>46595.211<br>29524.558<br>16075.736<br>17553.302<br>5081.103<br>3551.351<br>1134.619<br>512.815<br>168.348<br>66.910<br>180.034<br>120263.953<br>10515.145<br>1986<br>33428.692<br>27230.078 | 1977<br>58528.115<br>37937.200<br>22191.070<br>10370.276<br>9563.123<br>2844.421<br>1693.308<br>682.831<br>382.759<br>124.259<br>748.981<br>144317.363<br>15290.702<br>1987<br>41391.960<br>27265.947 | 1978<br>34730.802<br>47868.096<br>29475.982<br>14749.131<br>6279.946<br>5133.207<br>1379.641<br>777.408<br>372.659<br>240.085<br>527.275<br>141006.956<br>14182.945<br>1988<br>27560.800<br>33805.625 | 1979<br>9231.081<br>28331.119<br>37790.394<br>20859.191<br>8743.956<br>3434.157<br>2317.033<br>584.842<br>264.600<br>168.477<br>480.660<br>111724.849<br>15513.064<br>1989<br>48976.576<br>22540.444 |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 875.564<br>(834.904<br>(346.433)<br>(3061.201<br>(2441.674)<br>(656.405)<br>(524.285)<br>(141.249)<br>(10.280)<br>(19.826)<br>(141.045)<br>(3935.095)<br>(1980)<br>(2647.299)<br>(287.223)<br>(297.223)<br>(297.488)                                                                                                     | 23352.180<br>9189.941<br>5018.513<br>3146.710<br>1699.184<br>1378.355<br>117.575<br>237.423<br>4.350<br>4.322<br>85471.892<br>6583.597<br>1981<br>97229.724<br>18215.394<br>5329.268<br>12526.620<br>13630.449                      | 32462.685<br>16922.203<br>5359.716<br>2298.231<br>1151.189<br>901.657<br>918.579<br>93.548<br>187.147<br>262.772<br>86971.436<br>5550.351<br><b>1982</b><br>58770.705<br>78279.378<br>12425.200<br>3184.233                           | 21118.796<br>24614.701<br>11452.384<br>2712.405<br>1045.563<br>505.478<br>638.682<br>430.852<br>53.065<br>17.549<br>114477.409<br>5386.044<br><b>1983</b><br>41961.183<br>47903.842<br>59471.444                           | 41439.765<br>14851.166<br>11890.742<br>4599.783<br>1566.532<br>594.536<br>320.652<br>291.271<br>274.031<br>150.993<br>102037.504<br>7646.804<br><b>1984</b><br>56278.771<br>34279.809<br>36738.380               | 21221.974<br>27293.742<br>9041.941<br>6990.040<br>2536.309<br>917.014<br>294.035<br>175.663<br>147.988<br>128.122<br>104967.428<br>11061.049<br><b>1985</b><br>33518.607<br>45961.342                            | 29524.558<br>16075.736<br>17553.302<br>5081.103<br>3551.351<br>1134.619<br>512.815<br>168.348<br>66.910<br>180.034<br>120263.953<br>10515.145<br><b>1986</b><br>33428.692<br>27230.078               | 37937.200<br>22191.070<br>10370.276<br>9563.123<br>2844.421<br>1693.308<br>682.831<br>382.759<br>124.259<br>748.981<br>144317.363<br>15290.702<br>1987<br>41391.960                                   | 47868.096<br>29475.982<br>14749.131<br>6279.946<br>5133.207<br>1379.641<br>777.408<br>372.659<br>240.085<br>527.275<br>141006.956<br>14182.945<br><b>1988</b><br>27560.800                            | 28331.119<br>37790.394<br>20859.191<br>8743.956<br>3434.157<br>2317.033<br>584.842<br>264.600<br>168.477<br>480.660<br>1111724.849<br>15513.064<br><b>1989</b><br>48976.576                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 7834.904<br>5346.433<br>5061.201<br>2441.674<br>656.405<br>524.285<br>141.249<br>110.280<br>19.826<br>141.045<br>5935.095<br>1980<br>2647.299<br>287.223<br>9497.488                                                                                                                                                     | 9189.941<br>5018.513<br>3146.710<br>1699.184<br>1378.355<br>117.575<br>237.423<br>4.350<br>4.322<br>85471.892<br>6583.597<br>1981<br>97229.724<br>18215.394<br>5329.268<br>12526.620<br>13630.449                                   | 16922.203<br>5359.716<br>2298.231<br>1151.189<br>901.657<br>918.579<br>93.548<br>187.147<br>262.772<br>86971.436<br>5550.351<br><b>1982</b><br>58770.705<br>78279.378<br>12425.200<br>3184.233                                        | 24614.701<br>11452.384<br>2712.405<br>1045.563<br>505.478<br>638.682<br>430.852<br>53.065<br>17.549<br>114477.409<br>5386.044<br><b>1983</b><br>41961.183<br>47903.842<br>59471.444                                        | 14851.166<br>11890.742<br>4599.783<br>1566.532<br>594.536<br>320.652<br>291.271<br>274.031<br>150.993<br>102037.504<br>7646.804<br><b>1984</b><br>56278.771<br>34279.809<br>36738.380                            | 27293.742<br>9041.941<br>6990.040<br>2536.309<br>917.014<br>294.035<br>175.663<br>147.988<br>128.122<br>104967.428<br>11061.049<br><b>1985</b><br>33518.607<br>45961.342                                         | 16075.736<br>17553.302<br>5081.103<br>3551.351<br>1134.619<br>512.815<br>168.348<br>66.910<br>180.034<br>120263.953<br>10515.145<br><b>1986</b><br>33428.692<br>27230.078                            | 22191.070<br>10370.276<br>9563.123<br>2844.421<br>1693.308<br>682.831<br>382.759<br>124.259<br>748.981<br>144317.363<br>15290.702<br>1987<br>41391.960                                                | 29475.982<br>14749.131<br>6279.946<br>5133.207<br>1379.641<br>777.408<br>372.659<br>240.085<br>527.275<br>141006.956<br>14182.945<br>1988<br>27560.800                                                | 28331.119<br>37790.394<br>20859.191<br>8743.956<br>3434.157<br>2317.033<br>584.842<br>264.600<br>168.477<br>480.660<br>1111724.849<br>15513.064<br><b>1989</b><br>48976.576                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 3346.433<br>3061.201<br>2441.674<br>656.405<br>524.285<br>141.249<br>110.280<br>19.826<br>141.045<br>5935.095<br><b>1980</b><br>2647.299<br>287.223<br>9497.488                                                                                                                                                          | 5018.513<br>3146.710<br>1699.184<br>1378.355<br>117.575<br>237.423<br>4.350<br>4.322<br>85471.892<br>6583.597<br><b>1981</b><br>97229.724<br>18215.394<br>5329.268<br>12526.620<br>13630.449                                        | 5359.716<br>2298.231<br>1151.189<br>901.657<br>918.579<br>93.548<br>187.147<br>262.772<br>86971.436<br>5550.351<br><b>1982</b><br>58770.705<br>78279.378<br>12425.200<br>3184.233                                                     | 11452.384<br>2712.405<br>1045.563<br>505.478<br>638.682<br>430.852<br>53.065<br>17.549<br>114477.409<br>5386.044<br><b>1983</b><br>41961.183<br>47903.842<br>59471.444                                                     | 11890.742<br>4599.783<br>1566.532<br>594.536<br>320.652<br>291.271<br>274.031<br>150.993<br>102037.504<br>7646.804<br><b>1984</b><br>56278.771<br>34279.809<br>36738.380                                         | 9041.941<br>6990.040<br>2536.309<br>917.014<br>294.035<br>175.663<br>147.988<br>128.122<br>104967.428<br>11061.049<br><b>1985</b><br>33518.607<br>45961.342                                                      | 17553.302<br>5081.103<br>3551.351<br>1134.619<br>512.815<br>168.348<br>66.910<br>180.034<br>120263.953<br>10515.145<br><b>1986</b><br>33428.692<br>27230.078                                         | 10370.276<br>9563.123<br>2844.421<br>1693.308<br>682.831<br>382.759<br>124.259<br>748.981<br>144317.363<br>15290.702<br>1987<br>41391.960                                                             | 14749.131<br>6279.946<br>5133.207<br>1379.641<br>777.408<br>372.659<br>240.085<br>527.275<br>141006.956<br>14182.945<br>1988<br>27560.800                                                             | 20859.191<br>8743.956<br>3434.157<br>2317.033<br>584.842<br>264.600<br>168.477<br>480.660<br>1111724.849<br>15513.064<br><b>1989</b><br>48976.576                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 3061.201         2441.674         656.405         524.285         141.249         110.280         19.826         141.045         5935.095         1980         2647.299         287.223         247.488                                                                                                                  | 3146.710<br>1699.184<br>1378.355<br>117.575<br>237.423<br>4.350<br>4.322<br>85471.892<br>6583.597<br><b>1981</b><br>97229.724<br>18215.394<br>5329.268<br>12526.620<br>13630.449                                                    | 2298.231<br>1151.189<br>901.657<br>918.579<br>93.548<br>187.147<br>262.772<br>86971.436<br>5550.351<br>1982<br>58770.705<br>78279.378<br>12425.200<br>3184.233                                                                        | 2712.405.<br>1045.563<br>505.478<br>638.682<br>430.852<br>53.065<br>17.549<br>114477.409<br>5386.044<br><b>1983</b><br>41961.183<br>47903.842<br>59471.444                                                                 | 4599.783<br>1566.532<br>594.536<br>320.652<br>291.271<br>274.031<br>150.993<br>102037.504<br>7646.804<br><b>1984</b><br>56278.771<br>34279.809<br>36738.380                                                      | 9041.941<br>6990.040<br>2536.309<br>917.014<br>294.035<br>175.663<br>147.988<br>128.122<br>104967.428<br>11061.049<br><b>1985</b><br>33518.607<br>45961.342                                                      | 5081.103<br>3551.351<br>1134.619<br>512.815<br>168.348<br>66.910<br>180.034<br>120263.953<br>10515.145<br><b>1986</b><br>33428.692<br>27230.078                                                      | 10370.276<br>9563.123<br>2844.421<br>1693.308<br>682.831<br>382.759<br>124.259<br>748.981<br>144317.363<br>15290.702<br>1987<br>41391.960                                                             | 14749.131<br>6279.946<br>5133.207<br>1379.641<br>777.408<br>372.659<br>240.085<br>527.275<br>141006.956<br>14182.945<br>1988<br>27560.800                                                             | 20859.191<br>8743.956<br>3434.157<br>2317.033<br>584.842<br>264.600<br>168.477<br>480.660<br>1111724.849<br>15513.064<br><b>1989</b><br>48976.576                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 3061.201         2441.674         656.405         524.285         141.249         110.280         19.826         141.045         5935.095         1980         2647.299         287.223         247.488                                                                                                                  | 3146.710<br>1699.184<br>1378.355<br>117.575<br>237.423<br>4.350<br>4.322<br>85471.892<br>6583.597<br><b>1981</b><br>97229.724<br>18215.394<br>5329.268<br>12526.620<br>13630.449                                                    | 2298.231<br>1151.189<br>901.657<br>918.579<br>93.548<br>187.147<br>262.772<br>86971.436<br>5550.351<br>1982<br>58770.705<br>78279.378<br>12425.200<br>3184.233                                                                        | 2712.405.<br>1045.563<br>505.478<br>638.682<br>430.852<br>53.065<br>17.549<br>114477.409<br>5386.044<br><b>1983</b><br>41961.183<br>47903.842<br>59471.444                                                                 | 4599.783<br>1566.532<br>594.536<br>320.652<br>291.271<br>274.031<br>150.993<br>102037.504<br>7646.804<br><b>1984</b><br>56278.771<br>34279.809<br>36738.380                                                      | 6990.040<br>2536.309<br>917.014<br>294.035<br>175.663<br>147.988<br>128.122<br>104967.428<br>11061.049<br><b>1985</b><br>33518.607<br>45961.342                                                                  | 5081.103<br>3551.351<br>1134.619<br>512.815<br>168.348<br>66.910<br>180.034<br>120263.953<br>10515.145<br><b>1986</b><br>33428.692<br>27230.078                                                      | 9563.123<br>2844.421<br>1693.308<br>682.831<br>382.759<br>124.259<br>748.981<br>144317.363<br>15290.702<br>1987<br>41391.960                                                                          | 6279.946<br>5133.207<br>1379.641<br>777.408<br>372.659<br>240.085<br>527.275<br>141006.956<br>14182.945<br>1988<br>27560.800                                                                          | 8743.956<br>3434.157<br>2317.033<br>584.842<br>264.600<br>168.477<br>480.660<br>1111724.849<br>15513.064<br><b>1989</b><br>48976.576                                                                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2441.674<br>656.405<br>524.285<br>141.249<br>110.280<br>19.826<br>141.045<br>5935.095<br><b>1980</b><br>2647.299<br>287.223<br>2497.488                                                                                                                                                                                  | 1699.184<br>1378.355<br>117.575<br>237.423<br>4.350<br>4.322<br>85471.892<br>6583.597<br>1981<br>97229.724<br>18215.394<br>5329.268<br>12526.620<br>13630.449                                                                       | 1151.189<br>901.657<br>918.579<br>93.548<br>187.147<br>262.772<br>86971.436<br>5550.351<br><b>1982</b><br>58770.705<br>78279.378<br>12425.200<br>3184.233                                                                             | 1045.563<br>505.478<br>638.682<br>430.852<br>53.065<br>17.549<br>114477.409<br>5386.044<br><b>1983</b><br>41961.183<br>47903.842<br>59471.444                                                                              | 1566.532<br>594.536<br>320.652<br>291.271<br>274.031<br>150.993<br>102037.504<br>7646.804<br><b>1984</b><br>56278.771<br>34279.809<br>36738.380                                                                  | 2536.309<br>917.014<br>294.035<br>175.663<br>147.988<br>128.122<br>104967.428<br>11061.049<br><b>1985</b><br>33518.607<br>45961.342                                                                              | 3551.351<br>1134.619<br>512.815<br>168.348<br>66.910<br>180.034<br>120263.953<br>10515.145<br><b>1986</b><br>33428.692<br>27230.078                                                                  | 2844.421<br>1693.308<br>682.831<br>382.759<br>124.259<br>748.981<br>144317.363<br>15290.702<br><b>1987</b><br>41391.960                                                                               | 5133.207<br>1379.641<br>777.408<br>372.659<br>240.085<br>527.275<br>141006.956<br>14182.945<br>1988<br>27560.800                                                                                      | 3434.157<br>2317.033<br>584.842<br>264.600<br>168.477<br>480.660<br>1111724.849<br>15513.064<br><b>1989</b><br>48976.576                                                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 656.405<br>524.285<br>141.249<br>110.280<br>19.826<br>141.045<br>935.095<br><b>1980</b><br>2647.299<br>287.223<br>9497.488                                                                                                                                                                                               | 1378.355<br>117.575<br>237.423<br>4.350<br>4.322<br>85471.892<br>6583.597<br>1981<br>97229.724<br>18215.394<br>5329.268<br>12526.620<br>13630.449                                                                                   | 901.657<br>918.579<br>93.548<br>187.147<br>262.772<br>86971.436<br>5550.351<br><b>1982</b><br>58770.705<br>78279.378<br>12425.200<br>3184.233                                                                                         | 505.478<br>638.682<br>430.852<br>53.065<br>17.549<br>114477.409<br>5386.044<br><b>1983</b><br>41961.183<br>47903.842<br>59471.444                                                                                          | 594.536<br>320.652<br>291.271<br>274.031<br>150.993<br>102037.504<br>7646.804<br><b>1984</b><br>56278.771<br>34279.809<br>36738.380                                                                              | 917.014<br>294.035<br>175.663<br>147.988<br>128.122<br>104967.428<br>11061.049<br><b>1985</b><br>33518.607<br>45961.342                                                                                          | 1134.619<br>512.815<br>168.348<br>66.910<br>180.034<br>120263.953<br>10515.145<br><b>1986</b><br>33428.692<br>27230.078                                                                              | 1693,308<br>682,831<br>382,759<br>124,259<br>748,981<br>144317,363<br>15290,702<br><b>1987</b><br>41391,960                                                                                           | 1379.641<br>777.408<br>372.659<br>240.085<br>527.275<br>141006.956<br>14182.945<br>1988<br>27560.800                                                                                                  | 2317.033<br>584.842<br>264.600<br>168.477<br>480.660<br>111724.849<br>15513.064<br><b>1989</b><br>48976.576                                                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 524.285<br>141.249<br>110.280<br>19.826<br>141.045<br>5935.095<br><b>1980</b><br>2647.299<br>287.223<br>2497.488                                                                                                                                                                                                         | 117.575<br>237.423<br>4.350<br>4.322<br>85471.892<br>6583.597<br>1981<br>97229.724<br>18215.394<br>5329.268<br>12526.620<br>13630.449                                                                                               | 918.579<br>93.548<br>187.147<br>262.772<br>86971.436<br>5550.351<br><b>1982</b><br>58770.705<br>78279.378<br>12425.200<br>3184.233                                                                                                    | 430.852<br>53.065<br>17.549<br>114477.409<br>5386.044<br><b>1983</b><br>41961.183<br>47903.842<br>59471.444                                                                                                                | 320.652<br>291.271<br>274.031<br>150.993<br>102037.504<br>7646.804<br><b>1984</b><br>56278.771<br>34279.809<br>36738.380                                                                                         | 294.035<br>175.663<br>147.988<br>128.122<br>104967.428<br>11061.049<br><b>1985</b><br>33518.607<br>45961.342                                                                                                     | 512.815<br>168.348<br>66.910<br>180.034<br>120263.953<br>10515.145<br><b>1986</b><br>33428.692<br>27230.078                                                                                          | 682.831<br>382.759<br>124.259<br>748.981<br>144317.363<br>15290.702<br><b>1987</b><br>41391.960                                                                                                       | 777.408<br>372.659<br>240.085<br>527.275<br>141006.956<br>14182.945<br>1988<br>27560.800                                                                                                              | 584.842<br>264.600<br>168.477<br>480.660<br>111724.849<br>15513.064<br><b>1989</b><br>48976.576                                                                                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                      | 110.280<br>19.826<br>141.045<br>935.095<br><b>1980</b><br>2647.299<br>287.223<br>9497.488                                                                                                                                                                                                                                | 4.350<br>4.322<br>85471.892<br>6583.597<br><b>1981</b><br>97229.724<br>18215.394<br>5329.268<br>12526.620<br>13630.449                                                                                                              | 187.147<br>262.772<br>86971.436<br>5550.351<br><b>1982</b><br>58770.705<br>78279.378<br>12425.200<br>3184.233                                                                                                                         | 53.065<br>17.549<br>114477.409<br>5386.044<br><b>1983</b><br>41961.183<br>47903.842<br>59471.444                                                                                                                           | 291.271<br>274.031<br>150.993<br>102037.504<br>7646.804<br><b>1984</b><br>56278.771<br>34279.809<br>36738.380                                                                                                    | 175.663<br>147.988<br>128.122<br>104967.428<br>11061.049<br><b>1985</b><br>33518.607<br>45961.342                                                                                                                | 66.910<br>180.034<br>120263.953<br>10515.145<br><b>1986</b><br>33428.692<br>27230.078                                                                                                                | 382.759<br>124.259<br>748.981<br>144317.363<br>15290.702<br><b>1987</b><br>41391.960                                                                                                                  | 372.659<br>240.085<br>527.275<br>141006.956<br>14182.945<br>1988<br>27560.800                                                                                                                         | 264.600<br>168.477<br>480.660<br>111724.849<br>15513.064<br><b>1989</b><br>48976.576                                                                                                                 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                      | 110.280<br>19.826<br>141.045<br>935.095<br><b>1980</b><br>2647.299<br>287.223<br>9497.488                                                                                                                                                                                                                                | 4.322<br>85471.892<br>6583.597<br><b>1981</b><br>97229.724<br>18215.394<br>5329.268<br>12526.620<br>13630.449                                                                                                                       | 262.772<br>86971.436<br>5550.351<br><b>1982</b><br>58770.705<br>78279.378<br>12425.200<br>3184.233                                                                                                                                    | 17.549<br>114477.409<br>5386.044<br><b>1983</b><br>41961.183<br>47903.842<br>59471.444                                                                                                                                     | 274.031<br>150.993<br>102037.504<br>7646.804<br><b>1984</b><br>56278.771<br>34279.809<br>36738.380                                                                                                               | 147.988<br>128.122<br>104967.428<br>11061.049<br><b>1985</b><br>33518.607<br>45961.342                                                                                                                           | 66.910<br>180.034<br>120263.953<br>10515.145<br><b>1986</b><br>33428.692<br>27230.078                                                                                                                | 124.259<br>748.981<br>144317.363<br>15290.702<br><b>1987</b><br>41391.960                                                                                                                             | 240.085<br>527.275<br>141006.956<br>14182.945<br>1988<br>27560.800                                                                                                                                    | 168.477<br>480.660<br>111724.849<br>15513.064<br><b>1989</b><br>48976.576                                                                                                                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                      | 19.826<br>141.045<br>935.095<br><b>1960</b><br>2647.299<br>287.223<br>9497.488                                                                                                                                                                                                                                           | 4.322<br>85471.892<br>6583.597<br>1981<br>97229.724<br>18215.394<br>5329.268<br>12526.620<br>13630.449                                                                                                                              | 262.772<br>86971.436<br>5550.351<br><b>1982</b><br>58770.705<br>78279.378<br>12425.200<br>3184.233                                                                                                                                    | 17.549<br>114477.409<br>5386.044<br><b>1983</b><br>41961.183<br>47903.842<br>59471.444                                                                                                                                     | 150.993<br>102037.504<br>7646.804<br><b>1984</b><br>56278.771<br>34279.809<br>36738.380                                                                                                                          | 128.122<br>104967.428<br>11061.049<br><b>1985</b><br>33518.607<br>45961.342                                                                                                                                      | 180.034<br>120263.953<br>10515.145<br><b>1986</b><br>33428.692<br>27230.078                                                                                                                          | 748.981<br>144317.363<br>15290.702<br><b>1987</b><br>41391.960                                                                                                                                        | 527.275<br>141006.956<br>14182.945<br><b>1988</b><br>27560.800                                                                                                                                        | 480.660<br>111724.849<br>15513.064<br><b>1989</b><br>48976.576                                                                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 935.095<br><b>1980</b><br>9647.299<br>7287.223<br>9497.488                                                                                                                                                                                                                                                               | 6583.597<br><b>1981</b><br>97229.724<br>18215.394<br>5329.268<br>12526.620<br>13630.449                                                                                                                                             | 5550.351<br><b>1982</b><br>58770.705<br>78279.378<br>12425.200<br>3184.233                                                                                                                                                            | 5386.044<br><b>1983</b><br>41961.183<br>47903.842<br>59471.444                                                                                                                                                             | 7646.804<br><b>1984</b><br>56278.771<br>34279.809<br>36738.380                                                                                                                                                   | 11061.049<br>1985<br>33518.607<br>45961.342                                                                                                                                                                      | 10515.145<br>1986<br>33428.692<br>27230.078                                                                                                                                                          | 15290.702<br><b>1987</b><br>41391.960                                                                                                                                                                 | 14182.945<br><b>1988</b><br>27560.800                                                                                                                                                                 | 15513.064<br><b>1989</b><br>48976.576                                                                                                                                                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 935.095<br><b>1980</b><br>9647.299<br>7287.223<br>9497.488                                                                                                                                                                                                                                                               | 6583.597<br><b>1981</b><br>97229.724<br>18215.394<br>5329.268<br>12526.620<br>13630.449                                                                                                                                             | 5550.351<br><b>1982</b><br>58770.705<br>78279.378<br>12425.200<br>3184.233                                                                                                                                                            | 5386.044<br><b>1983</b><br>41961.183<br>47903.842<br>59471.444                                                                                                                                                             | 7646.804<br><b>1984</b><br>56278.771<br>34279.809<br>36738.380                                                                                                                                                   | 11061.049<br>1985<br>33518.607<br>45961.342                                                                                                                                                                      | 10515.145<br>1986<br>33428.692<br>27230.078                                                                                                                                                          | 15290.702<br><b>1987</b><br>41391.960                                                                                                                                                                 | 14182.945<br><b>1988</b><br>27560.800                                                                                                                                                                 | 15513.064<br><b>1989</b><br>48976.576                                                                                                                                                                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2647.299<br>7287.223<br>9497.488                                                                                                                                                                                                                                                                                         | 97229.724<br>18215.394<br>5329.268<br>12526.620<br>13630.449                                                                                                                                                                        | 58770.705<br>78279.378<br>12425.200<br>3184.233                                                                                                                                                                                       | 41961.183<br>47903.842<br>59471.444                                                                                                                                                                                        | <b>1984</b><br>56278.771<br>34279.809<br>36738.380                                                                                                                                                               | 33518.607<br>45961.342                                                                                                                                                                                           | 33428.692<br>27230.078                                                                                                                                                                               | 41391.960                                                                                                                                                                                             | <b>1988</b><br>27560.800                                                                                                                                                                              | <b>1989</b><br>48976.576                                                                                                                                                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2647.299<br>7287.223<br>9497.488                                                                                                                                                                                                                                                                                         | 97229.724<br>18215.394<br>5329.268<br>12526.620<br>13630.449                                                                                                                                                                        | 58770.705<br>78279.378<br>12425.200<br>3184.233                                                                                                                                                                                       | 41961.183<br>47903.842<br>59471.444                                                                                                                                                                                        | 56278.771<br>34279.809<br>36738.380                                                                                                                                                                              | 33518.607<br>45961.342                                                                                                                                                                                           | 33428.692<br>27230.078                                                                                                                                                                               | 41391.960                                                                                                                                                                                             | 27560.800                                                                                                                                                                                             | 48976.576                                                                                                                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 287.223<br>497.488                                                                                                                                                                                                                                                                                                       | 18215.394<br>5329.268<br>12526.620<br>13630.449                                                                                                                                                                                     | 78279.378<br>12425.200<br>3184.233                                                                                                                                                                                                    | 47903.842<br>59471.444                                                                                                                                                                                                     | 34279.809<br>36738.380                                                                                                                                                                                           | 45961.342                                                                                                                                                                                                        | 27230.078                                                                                                                                                                                            |                                                                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                                                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 497.488                                                                                                                                                                                                                                                                                                                  | 5329.268<br>12526.620<br>13630.449                                                                                                                                                                                                  | 12425.200<br>3184.233                                                                                                                                                                                                                 | 59471.444                                                                                                                                                                                                                  | 36738.380                                                                                                                                                                                                        |                                                                                                                                                                                                                  |                                                                                                                                                                                                      | 27265.947                                                                                                                                                                                             | 33805.625                                                                                                                                                                                             | 22540.444                                                                                                                                                                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       |                                                                                                                                                                                                                                                                                                                          | 12526.620<br>13630.449                                                                                                                                                                                                              | 3184.233                                                                                                                                                                                                                              |                                                                                                                                                                                                                            |                                                                                                                                                                                                                  | 26909.552                                                                                                                                                                                                        |                                                                                                                                                                                                      |                                                                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                      | 1165 640                                                                                                                                                                                                                                                                                                                 | 12526.620<br>13630.449                                                                                                                                                                                                              | 3184.233                                                                                                                                                                                                                              | 8137.914                                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                                                                                                                                                                  | 35508.120                                                                                                                                                                                            | 20866.269                                                                                                                                                                                             | 21034.981                                                                                                                                                                                             | 26731.245                                                                                                                                                                                            |
| $ \begin{array}{r} 6 & 1302 \\ 7 & 516 \\ 8 & 211 \\ 9 & 141 \\ 10 & 33 \\ 11 & 16 \\ 12+ & 22 \\ \hline                                 $ | 165.640                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                            | 38532.490                                                                                                                                                                                                        | 25389.069                                                                                                                                                                                                        | 19433.890                                                                                                                                                                                            | 23489.648                                                                                                                                                                                             | 14259.858                                                                                                                                                                                             | 14074.961                                                                                                                                                                                            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                      | 3026.200                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                       | 1840.632                                                                                                                                                                                                                   | 4973.429                                                                                                                                                                                                         | 22707.473                                                                                                                                                                                                        | 15527.896                                                                                                                                                                                            | 11890.930                                                                                                                                                                                             | 12326.883                                                                                                                                                                                             | 7924.433                                                                                                                                                                                             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                      | 5182.780                                                                                                                                                                                                                                                                                                                 | 6958.736                                                                                                                                                                                                                            | 6915.075                                                                                                                                                                                                                              | 3189.895                                                                                                                                                                                                                   | 1125.140                                                                                                                                                                                                         | 2941.757                                                                                                                                                                                                         | 11320.938                                                                                                                                                                                            | 8001.678                                                                                                                                                                                              | 6108.882                                                                                                                                                                                              | 5552.829                                                                                                                                                                                             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2119,449                                                                                                                                                                                                                                                                                                                 | 2791.038                                                                                                                                                                                                                            | 3209.933                                                                                                                                                                                                                              | 3289.101                                                                                                                                                                                                                   | 1826.266                                                                                                                                                                                                         | 737.505                                                                                                                                                                                                          | 1147.164                                                                                                                                                                                             | 5213.319                                                                                                                                                                                              | 3795.085                                                                                                                                                                                              | 2916.784                                                                                                                                                                                             |
| $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                      | 416.558                                                                                                                                                                                                                                                                                                                  | 1310.889                                                                                                                                                                                                                            | 1420.989                                                                                                                                                                                                                              | 1411.970                                                                                                                                                                                                                   | 1806,148                                                                                                                                                                                                         | 1162.240                                                                                                                                                                                                         | 411.088                                                                                                                                                                                              | 507,611                                                                                                                                                                                               | 2321.094                                                                                                                                                                                              | 1799.663                                                                                                                                                                                             |
| $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                      | 334.054                                                                                                                                                                                                                                                                                                                  | 857.564                                                                                                                                                                                                                             | 800.909                                                                                                                                                                                                                               | 663.032                                                                                                                                                                                                                    | 667.411                                                                                                                                                                                                          | 1184.676                                                                                                                                                                                                         | 736.210                                                                                                                                                                                              | 210.798                                                                                                                                                                                               | 169.481                                                                                                                                                                                               | 847.121                                                                                                                                                                                              |
| $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                      | 160,536                                                                                                                                                                                                                                                                                                                  | 173.968                                                                                                                                                                                                                             | 459.617                                                                                                                                                                                                                               | 416.852                                                                                                                                                                                                                    | 292.205                                                                                                                                                                                                          | 371.796                                                                                                                                                                                                          | 650.523                                                                                                                                                                                              | 364.786                                                                                                                                                                                               | 98.390                                                                                                                                                                                                | 76.325                                                                                                                                                                                               |
| 6+ 2223<br>1<br>2 6160<br>3 4003                                                                                                           | 276.096                                                                                                                                                                                                                                                                                                                  | 404.572                                                                                                                                                                                                                             | 550.539                                                                                                                                                                                                                               | 826.453                                                                                                                                                                                                                    | 674.543                                                                                                                                                                                                          | 475.421                                                                                                                                                                                                          | 620.898                                                                                                                                                                                              | 637.887                                                                                                                                                                                               | 423.096                                                                                                                                                                                               | 189.608                                                                                                                                                                                              |
| 6+ 2223<br>1<br>2 6160<br>3 4003                                                                                                           | 5837.227                                                                                                                                                                                                                                                                                                                 | 159023.650                                                                                                                                                                                                                          | 172235.630                                                                                                                                                                                                                            | 168285.864                                                                                                                                                                                                                 | 176520.049                                                                                                                                                                                                       | 160884.018                                                                                                                                                                                                       | 145394.599                                                                                                                                                                                           | 139202.945                                                                                                                                                                                            | 121481.080                                                                                                                                                                                            | 131440.381                                                                                                                                                                                           |
| 2 6160<br>3 4003                                                                                                                           | 2239.577                                                                                                                                                                                                                                                                                                                 | 25722.644                                                                                                                                                                                                                           | 19576.115                                                                                                                                                                                                                             | 10811.481                                                                                                                                                                                                                  | 10690.599                                                                                                                                                                                                        | 29105.448                                                                                                                                                                                                        | 29793.820                                                                                                                                                                                            | 26189.122                                                                                                                                                                                             | 24819.815                                                                                                                                                                                             | 19117.155                                                                                                                                                                                            |
| 2 6160<br>3 4003                                                                                                                           |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                            |                                                                                                                                                                                                                  | · . ·                                                                                                                                                                                                            |                                                                                                                                                                                                      |                                                                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                                                      |
| 2 6160<br>3 4003                                                                                                                           |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                            |                                                                                                                                                                                                                  | ·                                                                                                                                                                                                                | 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11                                                                                                                                                                | 1                                                                                                                                                                                                     |                                                                                                                                                                                                       | 10 C                                                                                                                                                                                                 |
| 3 4000                                                                                                                                     | 1990                                                                                                                                                                                                                                                                                                                     | 1991                                                                                                                                                                                                                                | 1992                                                                                                                                                                                                                                  | 1993                                                                                                                                                                                                                       |                                                                                                                                                                                                                  |                                                                                                                                                                                                                  |                                                                                                                                                                                                      |                                                                                                                                                                                                       |                                                                                                                                                                                                       | · · ·                                                                                                                                                                                                |
| 3 400                                                                                                                                      | 602.709                                                                                                                                                                                                                                                                                                                  | 30870.806                                                                                                                                                                                                                           | (34269.000)                                                                                                                                                                                                                           | (34675.000)                                                                                                                                                                                                                | Walu                                                                                                                                                                                                             | es in parentheses                                                                                                                                                                                                |                                                                                                                                                                                                      | н.<br>1                                                                                                                                                                                               |                                                                                                                                                                                                       |                                                                                                                                                                                                      |
|                                                                                                                                            | 0033,480                                                                                                                                                                                                                                                                                                                 | 50389.885                                                                                                                                                                                                                           | 25003.427                                                                                                                                                                                                                             | (28040.000)                                                                                                                                                                                                                |                                                                                                                                                                                                                  | d from RCT3)                                                                                                                                                                                                     |                                                                                                                                                                                                      | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.                                                                                                                                                              | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -                                                                                       | 1997 - N. S.                                                                                                                                                     |
| 4 170                                                                                                                                      | 7802.167                                                                                                                                                                                                                                                                                                                 | 31120.789                                                                                                                                                                                                                           | 39835.154                                                                                                                                                                                                                             | 18611.633                                                                                                                                                                                                                  | Gerrye                                                                                                                                                                                                           | a nom Re13)                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                                                      |
| F 1070                                                                                                                                     | 602.107<br>6795.077                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                       | 27761.623                                                                                                                                                                                                                  |                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                                                      |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                          | 11821.761                                                                                                                                                                                                                           | 21459.354                                                                                                                                                                                                                             |                                                                                                                                                                                                                            |                                                                                                                                                                                                                  |                                                                                                                                                                                                                  |                                                                                                                                                                                                      |                                                                                                                                                                                                       | e                                                                                                                                                                                                     |                                                                                                                                                                                                      |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                          | 9107.925                                                                                                                                                                                                                            | 6282.080                                                                                                                                                                                                                              | 13893.079                                                                                                                                                                                                                  |                                                                                                                                                                                                                  |                                                                                                                                                                                                                  | n an                                                                                                                                                             | a a serie a serie da                                                                                                                                                                                  | المحري المحر المركز بالمحلق                                                                                                                                                                           | المتحم ليجرز ألجر ومراجر                                                                                                                                                                             |
|                                                                                                                                            | 7245.532                                                                                                                                                                                                                                                                                                                 | 3289,110                                                                                                                                                                                                                            | 3292.877                                                                                                                                                                                                                              | 3183.454                                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                                                                                                                                                                  |                                                                                                                                                                                                      |                                                                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                                                      |
| -                                                                                                                                          | 7245.532<br>3931.812                                                                                                                                                                                                                                                                                                     | 1634.725                                                                                                                                                                                                                            | 1025.280                                                                                                                                                                                                                              | 1402.062                                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                                                                                                                                                                  |                                                                                                                                                                                                      |                                                                                                                                                                                                       | ,                                                                                                                                                                                                     |                                                                                                                                                                                                      |
|                                                                                                                                            | 7245.532<br>3931.812<br>2308.609                                                                                                                                                                                                                                                                                         | 988.006                                                                                                                                                                                                                             | 562.049                                                                                                                                                                                                                               | 382.485                                                                                                                                                                                                                    |                                                                                                                                                                                                                  |                                                                                                                                                                                                                  |                                                                                                                                                                                                      | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                                                      |
|                                                                                                                                            | 7245.532<br>3931.812<br>2308.609<br>1418.075                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     | 430.689                                                                                                                                                                                                                               | 224.004                                                                                                                                                                                                                    |                                                                                                                                                                                                                  |                                                                                                                                                                                                                  | · · · · ·                                                                                                                                                                                            | 1                                                                                                                                                                                                     |                                                                                                                                                                                                       | 19 - Contra 19                                                                                       |
|                                                                                                                                            | 7245.532<br>3931.812<br>2308.609<br>1418.075<br>793.001                                                                                                                                                                                                                                                                  | 607.261                                                                                                                                                                                                                             |                                                                                                                                                                                                                                       | 171.651<br>156.905                                                                                                                                                                                                         |                                                                                                                                                                                                                  |                                                                                                                                                                                                                  |                                                                                                                                                                                                      | 1                                                                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                                      |
|                                                                                                                                            | 7245.532<br>3931.812<br>2308.609<br>1418.075<br>793.001<br>285.482                                                                                                                                                                                                                                                       | 607.261<br>382.328                                                                                                                                                                                                                  | 206.731                                                                                                                                                                                                                               | 100.000                                                                                                                                                                                                                    | _                                                                                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                      |                                                                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                                                      |
| 2+· 1522<br>6+· 159                                                                                                                        | 7245.532<br>3931.812<br>2308.609<br>1418.075<br>793.001                                                                                                                                                                                                                                                                  | 607.261                                                                                                                                                                                                                             | 186.960                                                                                                                                                                                                                               | ·                                                                                                                                                                                                                          | _                                                                                                                                                                                                                |                                                                                                                                                                                                                  |                                                                                                                                                                                                      |                                                                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                                                      |

Page 19

 Table A8.
 Estimates of mean (mid-year) biomass (metric tons) estimated from virtual population analysis (VPA) calibrated using the ADAPT procedure, 1970-1992

1

| 2<br>2 |            |            | 2          |            | Mcan (mid-ye | ar) Biomass (mt) |            |            | •          |            |
|--------|------------|------------|------------|------------|--------------|------------------|------------|------------|------------|------------|
|        | 1970       | 1971       | 1972       | 1973       | 1974         | 1975             | 1976       | 1977       | 1978       | 1979       |
| 2      | 15424.718  | 28639.246  | 25216.911  | 23238.199  | 19374.836    | 28223.889        | 25270.797  | 44006.284  | 26394.832  | 6001.246   |
| 3      | 14456.105  | 33940.359  | 52745.752  | 22607.860  | 47426.283    | 23718.277        | 31590.773  | 37887.593  | 52436.012  | 28131.440  |
| 4      | 13846.285  | 15059.531  | 38807.089  | 34101.532  | 22946.347    | 43912.101        | 24859.121  | 29147.940  | 44855.616  | 49974.144  |
| .5     | 12657.060  | 11006.603  | 16636.180  | 19907.493  | 27765.555    | 21098.061        | 36442.919  | 21284.168  | 30782.724  | 45251.252  |
| 6      | 8746.019   | 7937.933   | 8413.846   | 8265.744   | 14177.086    | 19550.752        | 14225.784  | 25133.417  | 18623.350  | 24035.265  |
| 7      | 8888.993   | 6280.344   | 4668.001   | 3882.863   | 6137.405     | 8869.328         | 11565.039  | 9231.600   | 16356.574  | 12667.215  |
| 8      | 1823.566   | 7069.677   | 4972.335   | 2529.870   | 2612.003     | 4534.313         | 4937.771   | 6670.940   | 5362.024   | 10339.612  |
| 9      | 2563.752   | 762.003    | 5688.600   | 3013.260   | 1604.594     | 1692.609         | 3112.350   | 3487.993   | 3135.620   | 3022.682   |
| 10     | 279.275    | 2032.599   | 542.667    | 2571.384   | 1557.418     | 861.938          | 1120.865   | 2159.630   | 1741.242   | 1555.644   |
| 11     | 695.595    | 31,214     | 942.402    | 370.142    | 1759.223     | 885.064          | 424.704    | 781.618    | 1229.751   | 1086.758   |
| 12+-   | 111.572    | 27.668     | 1857.564   | 130.422    | 1132.036     | 903.759          | 1235.084   | 4855.969   | 2825.487   | 3149.772   |
| 2+     | 79381.368  | 112759.509 | 158633.785 | 120488.347 | 145360.751   | 153346.331       | 153550.124 | 179791.182 | 200917.746 | 182065.258 |
| 6+     | 22997.200  | 24113.770  | 25227.852  | 20633.263  | 27847.730    | 36394.003        | 35386.514  | 47465.197  | 46448.561  | 52707.175  |
| SSB    | 57072.664  | 61709.630  | 87392.715  | 99963.655  | 88968.623    | 107900.408       | 112496.423 | 121151.386 | 136903.410 | 154126.564 |
|        | 1980       | 1981       | 1982       | 1983       | 1984         | 1985             | 1986       | 1987       | 1988       | 1989       |
| 1      | 53817.323  | 32529.991  | 23225.804  | 31150.688  | 18552.781    | 18503.012        | 22910.735  | 15255.093  | 27108.873  | 34097.524  |
| 2      | 19333.431  | 55943.975  | 31359.833  | 29253.194  | 38719.001    | 21488.530        | 17238.362  | 26979.038  | 29210.867  | 30161.309  |
| 3      | 8697.610   | 22250.160  | 76658.702  | 48806.399  | 44451.373    | 42535.712        | 27015.108  | 27137.961  | 39470.488  | 24294.634  |
| 4      | 30723.964  | 10329.439  | 25833.567  | 80090,105  | 66037.357    | 44330.795        | 53518.643  | 33840.276  | 31873.505  | 37200.716  |
| 5      | 51146.562  | 27596.382  | 8579.788   | 19664.593  | 78704.971    | 55154.153        | 39769.087  | 44666.480  | 28684.762  | 25918.433  |
| 6      | 33968.089  | 33942.901  | 19743.086  | 6047.212   | 13580.527    | 52839.637        | 38596.754  | 26391.258  | 27861.560  | 18856.486  |
| 7      | 16268.828  | 21221.072  | 22006.962  | 11931.748  | 4726.252     | 7127.192         | 30323.967  | 21880.423  | 15587.805  | 14416.083  |
| 8      | 9508.500   | 11852.397  | 11559.306  | 12815.260  | 8448.650     | 2870.628         | 3820.063   | 15297.898  | 11767.550  | 8852.833   |
| 9      | 7217.287   | 6955.497   | 6184.683   | 5981.627   | 8827.077     | 5934.333         | 1877.229   | 1599.758   | 6799.912   | 6092.569   |
| 10     | 1894.247   | 4747.018   | 4316.860   | 3041.317   | 3294.375     | 5640.506         | 3617.950   | 1051.849   | 695.979    | 2762.583   |
| 11 .   | 962.690    | 958.610    | 2500.123   | 2388.047   | 1769.786     | 1752.232         | 3031.058   | 1851.529   | 550.074    | 379.99     |
| 12+    | 1859.738   | 2382.737   | 3179.224   | 5440.745   | 4622.619     | 2907.368         | 3470.766   | 3722.909   | 2560.843   | 1110.049   |
| 2+.    | 179721.209 | 195797.451 | 208742.911 | 220019.502 | 268559.369   | 239673.718       | 218808.221 | 200696.470 | 192502.502 | 168935.65  |
| 6+•    | 69819.641  | 79677.494  | 66311.020  | 42205.212  | 40646.666    | 76164.528        | 81267.021  | 68072.715  | 63262.880  | 51360.562  |
| SSB    | 156623.661 | 146837.621 | 138795.873 | 154399.771 | 182932.336   | 203759.954       | 192095.242 | 172820.512 | 150703.151 | 136934.895 |

Page 20

Table A8. .Continued.

| • •  | 1990       | 1991       | 1992       | •  |    |       |   |                  |   |   |     |      |       |     |        |          |    |        |         |       |   |       |                   |         |  |
|------|------------|------------|------------|----|----|-------|---|------------------|---|---|-----|------|-------|-----|--------|----------|----|--------|---------|-------|---|-------|-------------------|---------|--|
| 2    | 27346.257  | 13082.038  | 24628.559  |    |    |       |   |                  |   |   |     |      |       |     |        | <u></u>  |    | 5.<br> | ·ندین : | <br>  |   | -     |                   |         |  |
| 3    | 43176.147  | 43558.798  | 22516.526  |    |    |       |   |                  |   |   | • • |      |       |     |        |          |    | 1.     |         |       |   | ÷.,   |                   |         |  |
| 4    | 27610.086  | 43665.692  | 56506.616  |    | ŗ  | 2     |   |                  |   | ÷ |     | 1. Å |       |     |        | al a     |    |        |         |       |   |       |                   | 1       |  |
| 5    | 32158.514  | 20327.792  | 44377.508  |    |    |       |   | •                |   |   | - 4 |      |       | 2.5 | 1      |          |    |        |         |       |   | · . · |                   | 7       |  |
| 6    | 15179.089  | 16689.817  | 15453.599  |    |    |       |   |                  | • |   |     |      |       | ÷   |        | аў.<br>П |    | 14     |         |       |   | -     |                   |         |  |
| 7    | 10286.333  | 6739,142   | 8769.586   |    | :  |       |   | · .              |   |   |     |      |       |     | 2      |          |    |        |         |       |   | 1     | 1.11              |         |  |
| 8    | 6675.278   | 3978.676   | 2940.075   |    |    | 1     |   |                  |   |   |     |      |       | • • | 24<br> |          | •. | :      |         |       | 1 |       | 2                 |         |  |
| 9    | 4818.439   | 3248.712   | 1874.098   |    |    | 2     |   |                  |   |   |     |      | · · · |     | ·      |          | 1  | t i    |         |       |   |       |                   | ÷       |  |
| 10   | 3011.601   | 1858.538   | 1638.833   |    |    |       | ÷ |                  |   |   |     |      | 1     |     |        |          |    |        |         |       |   |       |                   | 1.      |  |
| 11   | 1245.782   | 1223.025   | 839.353    |    |    |       |   | . <sup>1</sup> - |   |   |     | •    |       |     | 1. v   |          |    |        |         |       |   | ۰.    |                   | ÷.,     |  |
| 12+- | 1307.641   | 2132.479   | 981.548    | -  |    | 15    | • |                  |   |   | · . |      |       |     |        | •        |    |        |         |       |   |       | e<br>Terrestation | н<br>19 |  |
| 2+.  | 171507.526 | 154372.229 | 179544.753 |    |    |       |   | 2                |   |   |     |      |       |     | <br>   |          |    |        |         |       |   |       | •                 |         |  |
|      | 41216.522  | 33737.909  | 31515.544  | 1. |    |       |   | · ·              |   | • |     | •    |       |     |        |          |    |        |         | <br>• |   |       | 1.1               |         |  |
| SSB  | 123812.747 | 121976.770 | 125134.568 |    | ÷. | · · . | : |                  |   |   |     |      |       |     |        |          |    |        |         |       |   | ·     |                   |         |  |




Figure A6. Trends in recruitment (R) and spawning stock blomass (SSB) for Divisions 4VWX and Subareas 5 and 6 pollock.

1. 18 1. 18

### Fishing Mortality Estimates

Fishing mortality estimates for ages 7 and 8 in the terminal year equalled 0.65 and 0.79, respectively (Table A6, Figure A5). The mean of these (0.72) was applied to ages 9 through 12+. The mean unweighted F for ages 7 to 11 increased during the mid-1980s and has remained essentially unchanged since 1987, fluctuating between 0.6 and 0.7, except in 1991 when the mean F increased to 0.85. This suggests that exploitable stock size has declined approximately in proportion to the steady decline in landings since 1987.

# Stock Size and Spawning Stock Biomass Estimates

Total (age 2+) stock size has declined from a peak level of 172 million fish in 1982 to 121 million fish in 1988 before increasing to an estimated 152 million fish in 1990 (Table A7). In recent years, age 6+ stock size has declined from 30 million fish in 1986 to 14 million in 1992, a decline of about 50%. Mean (mid-year) age 6+ stock biomass has also declined from a maximum of 81,000 mt in 1986 to approximately 31,000-34,000 mt in 1991 and 1992 (Table A8), a decline of about 60%. Total catch, after peaking at 69,000 mt in 1986 has declined to about 42,000 mt in 1992, a 40% decline (Table A1, Figure A5).

Spawning stock biomass (SSB), adjusted to the spawning period (January 1 for pollock), has declined in recent years from a maximum of 204,000 mt in 1985 to 122,000 mt in 1991 (Table A8, Figure A6), a 41% decline. Compared to the mid-1980s, when the SSB was dominated by up to six moderate to strong year classes, current SSB is composed of only two to three moderate year classes.

### **Recruitment Estimates**

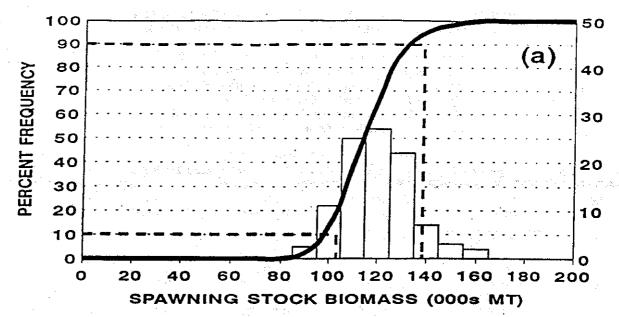
Since 1970, recruitment at age 2 has ranged from approximately 10 million (1977 year class) to 97 million (1979 year class) fish with most estimates between 25 and 50 million fish (Table A7, Figure A6). Over the 1970-1991 period, geometric mean recruitment for the 1968-1989 year classes equalled 38.2 million fish. The 1980 and 1982 year classes, at about 59 and 56 million fish, respectively, are the strongest to have re-

cruited during the 1980s with the 1981 and 1985 year classes slightly above the long-term mean and the 1987 and 1988 year classes well above the mean. The 1990 year class, estimated to be about 58 million fish by the VPA is considered to be uncertain due to minimum catch-at-age data for age 2.

### Precision of F and SSB

To evaluate the precision of the final estimates, a bootstrap procedure (Effron 1982) was used to generate distributions of the 1992 fishing mortality rate and spawning stock biomass. Figure A7 shows the distribution of the bootstrap estimates and a cumulative probability curve. The cumulative probability expresses the likelihood that the fishing mortality rate was greater than a given level (Figure A7b) or the likelihood that spawning stock biomass was less than a given level (Figure A7a) when measurement error is considered. The precision of the 1993 stock size, q, 1992 fishing mortality, and 1992 spawning stock biomass estimates are presented in Table A9.

Coefficients of variation for the 1993 stock size estimates ranged from 27% (age 6) to 55% (age 3), and CVs for qs among all indices ranged from 18 to 36%. The fully recruited fishing mortality for ages 7+ was reasonably well estimated (CV = 0.22). The mean bootstrap estimate of F (0.75) was slightly higher than the point estimate from the VPA (0.72) and ranged from 0.45 to 1.30 (Figure A7b).  $F_{med}$  is about equal to the lowest bootstrap estimate, and  $F_{1992}$  is almost certainly above the  $F_{med}$  level.


Although the abundance estimates of individual ages in 1993 had wider variances (CV = 0.27 to 0.55), the estimate of 1992 spawning stock biomass was robust (CV = 0.12). The bootstrap mean (128,800 mt) was slightly higher than the VPA point estimate (125,100 mt) and ranged from 100,000 to 190,000 t. Spawning stock biomass is currently at its lowest level since 1977.

### **BIOLOGICAL REFERENCE POINTS**

### Stock Recruitment Relationship

An estimate of  $F_{med}$  was derived by calculating the median slope of the R/SSB plot based on 20 spawning stock biomass and recruitment esti-





SCOTIAN SHELF-GULF OF MAINE-GEORGES BANK POLLOCK **PRECISION ESTIMATES - FISHING MORTALITY** 

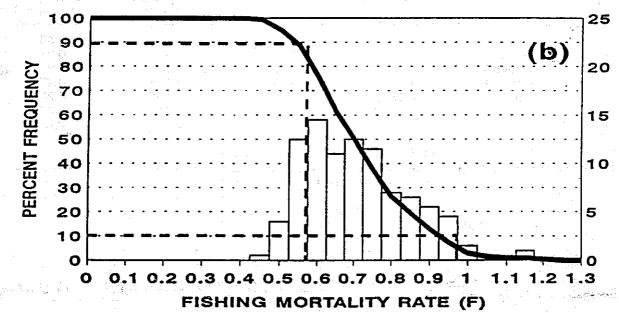



Figure A7. Precision estimates of spawning stock biomass (SSB) and fishing mortality (F) rate for Scotian Shelf-Gulf of Maine-Georges Bank pollock. The vertical bars display both the range of the estimators and the probability of individual values within the range. The solid line gives the probability that the SSB is less than any selected value on the X-axis, and the probability that SSB is greater than any selected value on the X-axis. The dashed lines indicate the value of the 10 to 90 percent probability levels. the precision estimates were derived from 200 bootstrap iterations of the final ADAPT formulation.

### Table A9. Bootstrap results for stock size (N), catchability (q), and fishing mortality (F)

Bootstrap Results for Total Stock Timestamp 1993 6 19 14 41 41 Pollock: Scotian Shelf, Georges Bank, Gulf of Maine Stock

> Seed for the random number generator: 74747 Main loop limit in Marquardt algorithm: 50 Number of bootstrap replications attempted: 200 Number for which NLLS Converged: 200 Results from the converged replications are used for computing the statistics that follow. Other replications are ignored.

# Bootstrap Output Variable: N hat

### Age-specific stock sizes (on Jan 1, 1993) estimated by NLLS

| Age    | NLLS<br>Estimate | Bootstrap<br>Mean | Bootstrap<br>Std.Error | CV for<br>NLLS SOLN   |                                           |
|--------|------------------|-------------------|------------------------|-----------------------|-------------------------------------------|
| 3      | 4.732E4          | 5.110E4           |                        | 0.51                  |                                           |
| 4      | 1.861E4          | 2.004E4           | 6.609E3                | 0.36                  | in an |
| 5      | 2.776E4          | 2.902E4           | 8.600E3                | 0.31                  |                                           |
| 6      | 1.389E4          | 1.451E4           | 3.601E3                | 0.26                  | . • .                                     |
| 7      | 3.184E3          | 3.118E3           | 1.198E3                | 0.38                  |                                           |
| 8      | 1.400E3          | 1.472E3           | 6.257E2                | 0.45                  |                                           |
| 9      | 3.827E2          | 4.242E2           | 1.844E2                | 0.48                  |                                           |
| Age    | Bias             | Bias              | Percent                | NLLS Est.             | CV for                                    |
|        | Estimate         | Std. Error        | Bias                   | Corrected<br>for Bias | Corrected<br>Estimate                     |
| 3      | 3.777E3          | 1.705E3           | 7.98                   | 4.354E4               | 0.55                                      |
| 4      | 1.433E3          | 4.673E2           | 7.70                   | 1.718E4               | 0.38                                      |
| 5      | 1.254E3          | 6.081E2           | 4.52                   | 2.651E4               | 0.32                                      |
| 6      | 6.157E2          | 2.546E2           | 4.43                   | 1.328E4               | 0.27                                      |
|        | 0.10120          |                   |                        |                       |                                           |
| 7      | -6.552E1         | 8.469E1           | -2.06                  | 3.249E3               | 0.37                                      |
| 7<br>8 |                  |                   | -2.06<br>5.14          | 3.249E3<br>1.329E3    | 0.37<br>0.47                              |

### Bootstrap Output Variable: q unscaled

# Catchability estimates (q) for each index of abundance used in the ADAPT run. Note that these q's have been rescaled to original units.

| Index    | NLLS<br>Estimate | Bootstrap<br>Mean | Bootstrap<br>Std. Error | CV for<br>NLLS SOLN |
|----------|------------------|-------------------|-------------------------|---------------------|
| USRVSP 2 | 4.367E-6         | 4.413E-6          | 8.609E-7                | 0.20                |
| USRVSP 3 | 5.865E-6         | 5.807E-6          | 1.194E-6                | 0.20                |
| USRVSP 4 | 7.253E-6         | 7.332E-6          | 1.659E-6                | 0.23                |
| USRVSP 5 | 9.715E-6         | 1.007E-5          | 2.125E-6                | 0.22                |
| USRVSP 6 | 2.006E-5         | 2.054E-5          | 4.255E-6                | 0.21                |
| USRVSP 7 | 2.546E-5         | 2.544E-5          | 4.965E-6                | o <b>0.19</b>       |
| USRVSP 8 | 3.334E-5         | 3.358E-5          | 7.325E-6                | 0.22                |
| USRVSP 9 | 4.435E-5         | 4.571E-5          | 1.032E-5                | 0.23                |
| USRVSP10 | 6.918E-5         | 7.069E-5          | 1.706E-5                | 0.25                |
| CNRVSU 2 | 4.937E-6         | 5.124E-6          | 1.081E-6                | 0.22                |
| CNRVSU 3 | 2.151E-5         | 2.140E-5          | 3.972E-6                | <b>0.18</b>         |
| CNRVSU 4 | 4.499E-5         | 4.574E-5          | 9.780E-6                | 0.22                |
| CNRVSU 5 | 9.624E-5         | 9.782E-5          | 2.212E-5                | 0.23                |
| CNRVSU 6 | 1.149E-4         | 1.182E-4          | 2.415E-5                | 0.21                |
| CNRVSU 7 | 1.337E-4         | 1.383E-4          | 2.847E-5                | 0.21                |
| CNRVSU 8 | 1.802E-4         | 1.831E-4          | 3.606E-5                | 0.20                |
| CNRVSU 9 | 1.503E-4         | 1.539E-4          | 3.172E-5                | 0.21                |

.

# Table A9. Continued.

Server.

| Index                                                                                                                                                                                                                                                                                                                 | NLLS<br>Estimate                                                                                                                                                                                                                                                        | Bootstrap<br>Mean                                                                                                                                                                                                                                                                            | Bootstra<br>Std. Erro                                                                                                                                                                            |                                                                                                                                                                                                                                                                                  | V for<br>S SOLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CNRVSU10                                                                                                                                                                                                                                                                                                              | 1.970E-4                                                                                                                                                                                                                                                                | 2.083E-4                                                                                                                                                                                                                                                                                     | 4.501E-5                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USRVFL 2                                                                                                                                                                                                                                                                                                              | 2.372E-6                                                                                                                                                                                                                                                                | 2.403E-6                                                                                                                                                                                                                                                                                     | 5.250E-7                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USRVFL 3                                                                                                                                                                                                                                                                                                              | 4.018E-6                                                                                                                                                                                                                                                                | 4.079E-6                                                                                                                                                                                                                                                                                     | 8.870E-7                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USRVFL 4                                                                                                                                                                                                                                                                                                              | 5.480E-6                                                                                                                                                                                                                                                                | 5.623E-6                                                                                                                                                                                                                                                                                     | 1.036E-6                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  | D.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USRVFL 5                                                                                                                                                                                                                                                                                                              | 8.906E-6                                                                                                                                                                                                                                                                | 9.048E-6                                                                                                                                                                                                                                                                                     | 1.781E-6                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USRVFL 6                                                                                                                                                                                                                                                                                                              | 1.247E-5                                                                                                                                                                                                                                                                | 1.284E-5                                                                                                                                                                                                                                                                                     | <b>2.77</b> 3E-6                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                  | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USRVFL 7                                                                                                                                                                                                                                                                                                              | 1.699E-5                                                                                                                                                                                                                                                                | 1.714E-5                                                                                                                                                                                                                                                                                     | 3.467E-6                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USRVFL 8                                                                                                                                                                                                                                                                                                              | 3.145E-5                                                                                                                                                                                                                                                                | 3.224E-5                                                                                                                                                                                                                                                                                     | 6.636E-6                                                                                                                                                                                         | 8 – 19 s. juli (                                                                                                                                                                                                                                                                 | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USRVFL 9                                                                                                                                                                                                                                                                                                              | 5.445E-5                                                                                                                                                                                                                                                                | 5.519E-5                                                                                                                                                                                                                                                                                     | 1.339E-5                                                                                                                                                                                         | 5 0                                                                                                                                                                                                                                                                              | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USRVFL10                                                                                                                                                                                                                                                                                                              | 8.922E-5                                                                                                                                                                                                                                                                | 9.085E-5                                                                                                                                                                                                                                                                                     | 2.212E-5                                                                                                                                                                                         | 5 (                                                                                                                                                                                                                                                                              | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MARVSP 1                                                                                                                                                                                                                                                                                                              | 3.054E-6                                                                                                                                                                                                                                                                | 3.022E-6                                                                                                                                                                                                                                                                                     | 9.092E-7                                                                                                                                                                                         | 7 · · · (                                                                                                                                                                                                                                                                        | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MARVSP 2                                                                                                                                                                                                                                                                                                              | 2.131E-6                                                                                                                                                                                                                                                                | 2.219E-6                                                                                                                                                                                                                                                                                     | 5.579E-7                                                                                                                                                                                         | 7 C                                                                                                                                                                                                                                                                              | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MARVSP 3                                                                                                                                                                                                                                                                                                              | 1.123E-6                                                                                                                                                                                                                                                                | 1.170E-6                                                                                                                                                                                                                                                                                     | 3.835E-7                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  | ).34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USCPUE 4                                                                                                                                                                                                                                                                                                              | 1.783E-5                                                                                                                                                                                                                                                                | 1.834E-5                                                                                                                                                                                                                                                                                     | 4.181E-6                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USCPUE 5                                                                                                                                                                                                                                                                                                              | 2.839E-5                                                                                                                                                                                                                                                                | 2.882E-5                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                  | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USCPUE 6                                                                                                                                                                                                                                                                                                              | 3.528E-5                                                                                                                                                                                                                                                                | 3.656E-5                                                                                                                                                                                                                                                                                     | 7.478E-6                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  | ).21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USCPUE 7                                                                                                                                                                                                                                                                                                              | 3.891E-5                                                                                                                                                                                                                                                                | 3.985E-5                                                                                                                                                                                                                                                                                     | 9.012E-6                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  | ).23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                  | ).20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USCPUE 8                                                                                                                                                                                                                                                                                                              | 4.100E-5                                                                                                                                                                                                                                                                | 4.152E-5                                                                                                                                                                                                                                                                                     | 8.049E-6                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| USCPUE 9                                                                                                                                                                                                                                                                                                              | 3.823E-5                                                                                                                                                                                                                                                                | 3.888E-5                                                                                                                                                                                                                                                                                     | 8.130E-6                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CNCPUE 4                                                                                                                                                                                                                                                                                                              | 9.127E-5                                                                                                                                                                                                                                                                | 9.119E-5                                                                                                                                                                                                                                                                                     | 1.955E-5                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CNCPUE 5                                                                                                                                                                                                                                                                                                              | 1.614E-4                                                                                                                                                                                                                                                                | 1.656E-4                                                                                                                                                                                                                                                                                     | 3.658E-5                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CNCPUE 6                                                                                                                                                                                                                                                                                                              | 2.123E-4                                                                                                                                                                                                                                                                | 2.216E-4                                                                                                                                                                                                                                                                                     | 4.540E-5                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  | ).21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CNCPUE 7                                                                                                                                                                                                                                                                                                              | 2.411E-4                                                                                                                                                                                                                                                                | 2.501E-4                                                                                                                                                                                                                                                                                     | 4.992E-5                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  | ).21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CNCPUE 8                                                                                                                                                                                                                                                                                                              | 2.096E-4                                                                                                                                                                                                                                                                | 2.108E-4                                                                                                                                                                                                                                                                                     | 4.130E-5                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CNCPUE 9                                                                                                                                                                                                                                                                                                              | 1.790E-4                                                                                                                                                                                                                                                                | 1.850E-4                                                                                                                                                                                                                                                                                     | 3.609E-5                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USCPUEAG                                                                                                                                                                                                                                                                                                              | 9.075E-5                                                                                                                                                                                                                                                                | 9.388E-5                                                                                                                                                                                                                                                                                     | 2.177E-5                                                                                                                                                                                         | 6 ° C                                                                                                                                                                                                                                                                            | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CNCPUEAG                                                                                                                                                                                                                                                                                                              | 1.890E-5                                                                                                                                                                                                                                                                | 1.949E-5                                                                                                                                                                                                                                                                                     | 3.682E-6                                                                                                                                                                                         | ; (                                                                                                                                                                                                                                                                              | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Index                                                                                                                                                                                                                                                                                                                 | Bias                                                                                                                                                                                                                                                                    | Bias                                                                                                                                                                                                                                                                                         | Percent                                                                                                                                                                                          | NLLS Est.                                                                                                                                                                                                                                                                        | CV for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                       | Estimate                                                                                                                                                                                                                                                                | Std. Error                                                                                                                                                                                                                                                                                   | Bias                                                                                                                                                                                             | Corrected<br>for Bias                                                                                                                                                                                                                                                            | Corrected<br>Estimate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| USRVSP 2                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                  | ······                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                       | 4 633E-8                                                                                                                                                                                                                                                                | 6.088E-8                                                                                                                                                                                                                                                                                     | 1.06                                                                                                                                                                                             | 4.320E-6                                                                                                                                                                                                                                                                         | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                       | 4.633E-8                                                                                                                                                                                                                                                                | 6.088E-8<br>8.445E-8                                                                                                                                                                                                                                                                         | 1.06                                                                                                                                                                                             | 4.320E-6                                                                                                                                                                                                                                                                         | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USRVSP 3                                                                                                                                                                                                                                                                                                              | -5.767E-8                                                                                                                                                                                                                                                               | 8.445E-8                                                                                                                                                                                                                                                                                     | -0.98                                                                                                                                                                                            | 5.922E-6                                                                                                                                                                                                                                                                         | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USRVSP 3<br>USRVSP 4                                                                                                                                                                                                                                                                                                  | -5.767E-8<br>7.906E-8                                                                                                                                                                                                                                                   | 8.445E-8<br>1.173E-7                                                                                                                                                                                                                                                                         | -0.98<br>1.09                                                                                                                                                                                    | 5.922E-6<br>7.174E-6                                                                                                                                                                                                                                                             | 0.20<br>0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| USRVSP 3<br>USRVSP 4<br>USRVSP 5                                                                                                                                                                                                                                                                                      | -5.767E-8<br>7.906E-8<br>3.540E-7                                                                                                                                                                                                                                       | 8.445E-8<br>1.173E-7<br>1.503E-7                                                                                                                                                                                                                                                             | -0.98<br>1.09<br>3.64                                                                                                                                                                            | 5.922E-6<br>7.174E-6<br>9.361E-6                                                                                                                                                                                                                                                 | 0.20<br>0.23<br>0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USRVSP 3<br>USRVSP 4<br>USRVSP 5<br>USRVSP 6                                                                                                                                                                                                                                                                          | -5.767E-8<br>7.906E-8<br>3.540E-7<br>4.855E-7                                                                                                                                                                                                                           | 8.445E-8<br>1.173E-7<br>1.503E-7<br>3.009E-7                                                                                                                                                                                                                                                 | -0.98<br>1.09<br>3.64<br>2.42                                                                                                                                                                    | 5.922E-6<br>7.174E-6<br>9.361E-6<br>1.957E-5                                                                                                                                                                                                                                     | 0.20<br>0.23<br>0.23<br>0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| USRVSP 3<br>USRVSP 4<br>USRVSP 5<br>USRVSP 6<br>USRVSP 7                                                                                                                                                                                                                                                              | -5.767E-8<br>7.906E-8<br>3.540E-7<br>4.855E-7<br>-1.756E-8                                                                                                                                                                                                              | 8.445E-8<br>1.173E-7<br>1.503E-7<br>3.009E-7<br>3.510E-7                                                                                                                                                                                                                                     | -0.98<br>1.09<br>3.64<br>2.42<br>-0.07                                                                                                                                                           | 5.922E-6<br>7.174E-6<br>9.361E-6<br>1.957E-5<br>2.548E-5                                                                                                                                                                                                                         | 0.20<br>0.23<br>0.23<br>0.22<br>0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USRVSP 3<br>USRVSP 4<br>USRVSP 5<br>USRVSP 6<br>USRVSP 7<br>USRVSP 8                                                                                                                                                                                                                                                  | -5.767E-8<br>7.906E-8<br>3.540E-7<br>4.855E-7<br>-1.756E-8<br>2.410E-7                                                                                                                                                                                                  | 8.445E-8<br>1.173E-7<br>1.503E-7<br>3.009E-7<br>3.510E-7<br>5.180E-7                                                                                                                                                                                                                         | -0.98<br>1.09<br>3.64<br>2.42<br>-0.07<br>0.72                                                                                                                                                   | 5.922E-6<br>7.174E-6<br>9.361E-6<br>1.957E-5<br>2.548E-5<br>3.310E-5                                                                                                                                                                                                             | 0.20<br>0.23<br>0.23<br>0.22<br>0.19<br>0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| USRVSP 3<br>USRVSP 4<br>USRVSP 5<br>USRVSP 6<br>USRVSP 7<br>USRVSP 8<br>USRVSP 9                                                                                                                                                                                                                                      | -5.767E-8<br>7.906E-8<br>3.540E-7<br>4.855E-7<br>-1.756E-8<br>2.410E-7<br>1.361E-6                                                                                                                                                                                      | 8.445E-8<br>1.173E-7<br>1.503E-7<br>3.009E-7<br>3.510E-7<br>5.180E-7<br>7.299E-7                                                                                                                                                                                                             | -0.98<br>1.09<br>3.64<br>2.42<br>-0.07<br>0.72<br>3.07                                                                                                                                           | 5.922E-6<br>7.174E-6<br>9.361E-6<br>1.957E-5<br>2.548E-5<br>3.310E-5<br>4.299E-5                                                                                                                                                                                                 | 0.20<br>0.23<br>0.23<br>0.22<br>0.19<br>0.22<br>0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USRVSP 3<br>USRVSP 4<br>USRVSP 5<br>USRVSP 6<br>USRVSP 7<br>USRVSP 8<br>USRVSP 9<br>USRVSP10                                                                                                                                                                                                                          | -5.767E-8<br>7.906E-8<br>3.540E-7<br>4.855E-7<br>-1.756E-8<br>2.410E-7<br>1.361E-6<br>1.511E-6                                                                                                                                                                          | 8.445E-8<br>1.173E-7<br>1.503E-7<br>3.009E-7<br>3.510E-7<br>5.180E-7<br>7.299E-7<br>1.206E-6                                                                                                                                                                                                 | -0.98<br>1.09<br>3.64<br>2.42<br>-0.07<br>0.72<br>3.07<br>2.18                                                                                                                                   | 5.922E-6<br>7.174E-6<br>9.361E-6<br>1.957E-5<br>2.548E-5<br>3.310E-5<br>4.299E-5<br>6.767E-5                                                                                                                                                                                     | 0.20<br>0.23<br>0.22<br>0.19<br>0.22<br>0.22<br>0.24<br>0.24<br>0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USRVSP 3<br>USRVSP 4<br>USRVSP 5<br>USRVSP 6<br>USRVSP 7<br>USRVSP 8<br>USRVSP 9<br>USRVSP10<br>CNRVSU 2                                                                                                                                                                                                              | -5.767E-8<br>7.906E-8<br>3.540E-7<br>4.855E-7<br>-1.756E-8<br>2.410E-7<br>1.361E-6<br>1.511E-6<br>1.862E-7                                                                                                                                                              | 8.445E-8<br>1.173E-7<br>1.503E-7<br>3.009E-7<br>3.510E-7<br>5.180E-7<br>7.299E-7<br>1.206E-6<br>7.642E-8                                                                                                                                                                                     | -0.98<br>1.09<br>3.64<br>2.42<br>-0.07<br>0.72<br>3.07<br>2.18<br>3.77                                                                                                                           | 5.922E-6<br>7.174E-6<br>9.361E-6<br>1.957E-5<br>2.548E-5<br>3.310E-5<br>4.299E-5<br>6.767E-5<br>4.751E-6                                                                                                                                                                         | 0.20<br>0.23<br>0.22<br>0.19<br>0.22<br>0.24<br>0.24<br>0.25<br>0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USRVSP 3<br>USRVSP 4<br>USRVSP 5<br>USRVSP 6<br>USRVSP 7<br>USRVSP 8<br>USRVSP 9<br>USRVSP 9<br>USRVSP10<br>CNRVSU 2<br>CNRVSU 3                                                                                                                                                                                      | -5.767E-8<br>7.906E-8<br>3.540E-7<br>4.855E-7<br>-1.756E-8<br>2.410E-7<br>1.361E-6<br>1.511E-6<br>1.862E-7<br>-1.123E-7                                                                                                                                                 | 8.445E-8<br>1.173E-7<br>1.503E-7<br>3.009E-7<br>3.510E-7<br>5.180E-7<br>7.299E-7<br>1.206E-6<br>7.642E-8<br>2.809E-7                                                                                                                                                                         | -0.98<br>1.09<br>3.64<br>2.42<br>-0.07<br>0.72<br>3.07<br>2.18<br>3.77<br>-0.52                                                                                                                  | 5.922E-6<br>7.174E-6<br>9.361E-6<br>1.957E-5<br>2.548E-5<br>3.310E-5<br>4.299E-5<br>6.767E-5<br>4.751E-6<br>2.163E-5                                                                                                                                                             | 0.20<br>0.23<br>0.22<br>0.19<br>0.22<br>0.24<br>0.25<br>0.23<br>0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USRVSP 3<br>USRVSP 4<br>USRVSP 5<br>USRVSP 6<br>USRVSP 7<br>USRVSP 8<br>USRVSP 9<br>USRVSP10<br>CNRVSU 2<br>CNRVSU 3<br>CNRVSU 4                                                                                                                                                                                      | -5.767E-8<br>7.906E-8<br>3.540E-7<br>4.855E-7<br>-1.756E-8<br>2.410E-7<br>1.361E-6<br>1.511E-6<br>1.862E-7<br>-1.123E-7<br>7.499E-7                                                                                                                                     | 8.445E-8<br>1.173E-7<br>1.503E-7<br>3.009E-7<br>3.510E-7<br>5.180E-7<br>7.299E-7<br>1.206E-6<br>7.642E-8<br>2.809E-7<br>6.915E-7                                                                                                                                                             | -0.98<br>1.09<br>3.64<br>2.42<br>-0.07<br>0.72<br>3.07<br>2.18<br>3.77<br>-0.52<br>1.67                                                                                                          | 5.922E-6<br>7.174E-6<br>9.361E-6<br>1.957E-5<br>2.548E-5<br>3.310E-5<br>4.299E-5<br>6.767E-5<br>4.751E-6<br>2.163E-5<br>4.424E-5                                                                                                                                                 | 0.20<br>0.23<br>0.22<br>0.19<br>0.22<br>0.24<br>0.25<br>0.23<br>0.18<br>0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| USRVSP 3<br>USRVSP 4<br>USRVSP 5<br>USRVSP 6<br>USRVSP 7<br>USRVSP 9<br>USRVSP 9<br>USRVSP10<br>CNRVSU 2<br>CNRVSU 3<br>CNRVSU 4<br>CNRVSU 5                                                                                                                                                                          | -5.767E-8<br>7.906E-8<br>3.540E-7<br>4.855E-7<br>-1.756E-8<br>2.410E-7<br>1.361E-6<br>1.511E-6<br>1.862E-7<br>-1.123E-7                                                                                                                                                 | 8.445E-8<br>1.173E-7<br>1.503E-7<br>3.009E-7<br>3.510E-7<br>5.180E-7<br>7.299E-7<br>1.206E-6<br>7.642E-8<br>2.809E-7                                                                                                                                                                         | -0.98<br>1.09<br>3.64<br>2.42<br>-0.07<br>0.72<br>3.07<br>2.18<br>3.77<br>-0.52<br>1.67<br>1.64                                                                                                  | 5.922E-6<br>7.174E-6<br>9.361E-6<br>1.957E-5<br>2.548E-5<br>3.310E-5<br>4.299E-5<br>6.767E-5<br>4.751E-6<br>2.163E-5<br>4.424E-5<br>9.466E-5                                                                                                                                     | 0.20<br>0.23<br>0.22<br>0.19<br>0.22<br>0.24<br>0.25<br>0.23<br>0.18<br>0.22<br>0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USRVSP 3<br>USRVSP 4<br>USRVSP 5<br>USRVSP 6<br>USRVSP 7<br>USRVSP 8<br>USRVSP 9<br>USRVSP10<br>CNRVSU 2<br>CNRVSU 3<br>CNRVSU 4                                                                                                                                                                                      | -5.767E-8<br>7.906E-8<br>3.540E-7<br>4.855E-7<br>-1.756E-8<br>2.410E-7<br>1.361E-6<br>1.511E-6<br>1.862E-7<br>-1.123E-7<br>7.499E-7                                                                                                                                     | 8.445E-8<br>1.173E-7<br>1.503E-7<br>3.009E-7<br>3.510E-7<br>5.180E-7<br>7.299E-7<br>1.206E-6<br>7.642E-8<br>2.809E-7<br>6.915E-7                                                                                                                                                             | -0.98<br>1.09<br>3.64<br>2.42<br>-0.07<br>0.72<br>3.07<br>2.18<br>3.77<br>-0.52<br>1.67                                                                                                          | 5.922E-6<br>7.174E-6<br>9.361E-6<br>1.957E-5<br>2.548E-5<br>3.310E-5<br>4.299E-5<br>6.767E-5<br>4.751E-6<br>2.163E-5<br>4.424E-5                                                                                                                                                 | $\begin{array}{c} 0.20\\ 0.23\\ 0.22\\ 0.19\\ 0.22\\ 0.24\\ 0.25\\ 0.23\\ 0.18\\ 0.22\\ 0.23\\ 0.18\\ 0.22\\ 0.23\\ 0.23\\ 0.22\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| USRVSP 3<br>USRVSP 4<br>USRVSP 5<br>USRVSP 6<br>USRVSP 7<br>USRVSP 9<br>USRVSP 9<br>USRVSP10<br>CNRVSU 2<br>CNRVSU 3<br>CNRVSU 3<br>CNRVSU 4<br>CNRVSU 5<br>CNRVSU 6<br>CNRVSU 7                                                                                                                                      | -5.767E-8<br>7.906E-8<br>3.540E-7<br>4.855E-7<br>-1.756E-8<br>2.410E-7<br>1.361E-6<br>1.511E-6<br>1.862E-7<br>-1.123E-7<br>7.499E-7<br>1.583E-6<br>3.278E-6<br>4.587E-6                                                                                                 | 8.445E-8<br>1.173E-7<br>1.503E-7<br>3.009E-7<br>3.510E-7<br>5.180E-7<br>7.299E-7<br>1.206E-6<br>7.642E-8<br>2.809E-7<br>6.915E-7<br>1.564E-6<br>1.707E-6<br>2.013E-6                                                                                                                         | -0.98<br>1.09<br>3.64<br>2.42<br>-0.07<br>0.72<br>3.07<br>2.18<br>3.77<br>-0.52<br>1.67<br>1.64                                                                                                  | 5.922E-6<br>7.174E-6<br>9.361E-6<br>1.957E-5<br>2.548E-5<br>3.310E-5<br>4.299E-5<br>6.767E-5<br>4.751E-6<br>2.163E-5<br>4.424E-5<br>9.466E-5                                                                                                                                     | $\begin{array}{c} 0.20\\ 0.23\\ 0.22\\ 0.19\\ 0.22\\ 0.24\\ 0.25\\ 0.23\\ 0.18\\ 0.22\\ 0.23\\ 0.18\\ 0.22\\ 0.23\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| USRVSP 3<br>USRVSP 4<br>USRVSP 5<br>USRVSP 6<br>USRVSP 7<br>USRVSP 7<br>USRVSP 9<br>USRVSP 9<br>USRVSP 0<br>CNRVSU 2<br>CNRVSU 3<br>CNRVSU 3<br>CNRVSU 4<br>CNRVSU 5<br>CNRVSU 6                                                                                                                                      | -5.767E-8<br>7.906E-8<br>3.540E-7<br>4.855E-7<br>-1.756E-8<br>2.410E-7<br>1.361E-6<br>1.511E-6<br>1.862E-7<br>-1.123E-7<br>7.499E-7<br>1.583E-6<br>3.278E-6                                                                                                             | 8.445E-8<br>1.173E-7<br>3.009E-7<br>3.510E-7<br>5.180E-7<br>7.299E-7<br>1.206E-6<br>7.642E-8<br>2.809E-7<br>6.915E-7<br>1.564E-6<br>1.707E-6                                                                                                                                                 | -0.98<br>1.09<br>3.64<br>2.42<br>-0.07<br>0.72<br>3.07<br>2.18<br>3.77<br>-0.52<br>1.67<br>1.64<br>2.85                                                                                          | 5.922E-6<br>7.174E-6<br>9.361E-6<br>1.957E-5<br>2.548E-5<br>3.310E-5<br>4.299E-5<br>6.767E-5<br>4.751E-6<br>2.163E-5<br>4.424E-5<br>9.466E-5<br>1.116E-4                                                                                                                         | $\begin{array}{c} 0.20\\ 0.23\\ 0.22\\ 0.19\\ 0.22\\ 0.24\\ 0.25\\ 0.23\\ 0.18\\ 0.22\\ 0.23\\ 0.18\\ 0.22\\ 0.23\\ 0.23\\ 0.22\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| USRVSP 3<br>USRVSP 4<br>USRVSP 5<br>USRVSP 6<br>USRVSP 7<br>USRVSP 9<br>USRVSP 9<br>USRVSP10<br>CNRVSU 2<br>CNRVSU 3<br>CNRVSU 3<br>CNRVSU 4<br>CNRVSU 5<br>CNRVSU 6<br>CNRVSU 7                                                                                                                                      | -5.767E-8<br>7.906E-8<br>3.540E-7<br>4.855E-7<br>-1.756E-8<br>2.410E-7<br>1.361E-6<br>1.511E-6<br>1.862E-7<br>-1.123E-7<br>7.499E-7<br>1.583E-6<br>3.278E-6<br>4.587E-6                                                                                                 | 8.445E-8<br>1.173E-7<br>1.503E-7<br>3.009E-7<br>3.510E-7<br>5.180E-7<br>7.299E-7<br>1.206E-6<br>7.642E-8<br>2.809E-7<br>6.915E-7<br>1.564E-6<br>1.707E-6<br>2.013E-6                                                                                                                         | -0.98<br>1.09<br>3.64<br>2.42<br>-0.07<br>0.72<br>3.07<br>2.18<br>3.77<br>-0.52<br>1.67<br>1.64<br>2.85<br>3.43                                                                                  | 5.922E-6<br>7.174E-6<br>9.361E-6<br>1.957E-5<br>2.548E-5<br>3.310E-5<br>4.299E-5<br>6.767E-5<br>4.751E-6<br>2.163E-5<br>4.424E-5<br>9.466E-5<br>1.116E-4<br>1.291E-4                                                                                                             | $\begin{array}{c} 0.20\\ 0.23\\ 0.22\\ 0.19\\ 0.22\\ 0.24\\ 0.25\\ 0.23\\ 0.18\\ 0.22\\ 0.23\\ 0.18\\ 0.22\\ 0.23\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| USRVSP 3<br>USRVSP 4<br>USRVSP 5<br>USRVSP 6<br>USRVSP 7<br>USRVSP 7<br>USRVSP 9<br>USRVSP10<br>CNRVSU 2<br>CNRVSU 3<br>CNRVSU 3<br>CNRVSU 4<br>CNRVSU 5<br>CNRVSU 6<br>CNRVSU 7<br>CNRVSU 8                                                                                                                          | -5.767E-8<br>7.906E-8<br>3.540E-7<br>4.855E-7<br>-1.756E-8<br>2.410E-7<br>1.361E-6<br>1.511E-6<br>1.862E-7<br>-1.123E-7<br>7.499E-7<br>1.583E-6<br>3.278E-6<br>4.587E-6<br>2.856E-6                                                                                     | 8.445E-8<br>1.173E-7<br>1.503E-7<br>3.009E-7<br>3.510E-7<br>5.180E-7<br>7.299E-7<br>1.206E-6<br>7.642E-8<br>2.809E-7<br>6.915E-7<br>1.564E-6<br>1.707E-6<br>2.013E-6<br>2.550E-6                                                                                                             | -0.98<br>1.09<br>3.64<br>2.42<br>-0.07<br>0.72<br>3.07<br>2.18<br>3.77<br>-0.52<br>1.67<br>1.64<br>2.85<br>3.43<br>1.58                                                                          | 5.922E-6<br>7.174E-6<br>9.361E-6<br>1.957E-5<br>2.548E-5<br>3.310E-5<br>4.299E-5<br>6.767E-5<br>4.751E-6<br>2.163E-5<br>4.424E-5<br>9.466E-5<br>1.116E-4<br>1.291E-4<br>1.773E-4                                                                                                 | $\begin{array}{c} 0.20\\ 0.23\\ 0.22\\ 0.19\\ 0.22\\ 0.24\\ 0.25\\ 0.23\\ 0.18\\ 0.22\\ 0.23\\ 0.18\\ 0.22\\ 0.23\\ 0.22\\ 0.22\\ 0.22\\ 0.20\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| USRVSP 3<br>USRVSP 4<br>USRVSP 5<br>USRVSP 6<br>USRVSP 7<br>USRVSP 7<br>USRVSP 9<br>USRVSP10<br>CNRVSU 2<br>CNRVSU 3<br>CNRVSU 3<br>CNRVSU 4<br>CNRVSU 5<br>CNRVSU 6<br>CNRVSU 7<br>CNRVSU 8<br>CNRVSU 9                                                                                                              | -5.767E-8<br>7.906E-8<br>3.540E-7<br>4.855E-7<br>-1.756E-8<br>2.410E-7<br>1.361E-6<br>1.511E-6<br>1.862E-7<br>-1.123E-7<br>7.499E-7<br>1.583E-6<br>3.278E-6<br>4.587E-6<br>2.856E-6<br>3.635E-6<br>1.127E-5                                                             | 8.445E-8<br>1.173E-7<br>1.503E-7<br>3.009E-7<br>3.510E-7<br>5.180E-7<br>7.299E-7<br>1.206E-6<br>7.642E-8<br>2.809E-7<br>6.915E-7<br>1.564E-6<br>1.707E-6<br>2.013E-6<br>2.550E-6<br>2.243E-6                                                                                                 | -0.98<br>1.09<br>3.64<br>2.42<br>-0.07<br>0.72<br>3.07<br>2.18<br>3.77<br>-0.52<br>1.67<br>1.64<br>2.85<br>3.43<br>1.58<br>2.42<br>5.72                                                          | 5.922E-6<br>7.174E-6<br>9.361E-6<br>1.957E-5<br>2.548E-5<br>3.310E-5<br>4.299E-5<br>6.767E-5<br>4.751E-6<br>2.163E-5<br>4.424E-5<br>9.466E-5<br>1.116E-4<br>1.291E-4<br>1.773E-4<br>1.467E-4<br>1.858E-4                                                                         | $\begin{array}{c} 0.20\\ 0.23\\ 0.22\\ 0.19\\ 0.22\\ 0.24\\ 0.25\\ 0.23\\ 0.18\\ 0.22\\ 0.23\\ 0.18\\ 0.22\\ 0.23\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.20\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\$ |
| USRVSP 3<br>USRVSP 4<br>USRVSP 5<br>USRVSP 6<br>USRVSP 7<br>USRVSP 7<br>USRVSP 9<br>USRVSP 9<br>USRVSP10<br>CNRVSU 2<br>CNRVSU 3<br>CNRVSU 3<br>CNRVSU 4<br>CNRVSU 5<br>CNRVSU 6<br>CNRVSU 6<br>CNRVSU 7<br>CNRVSU 8<br>CNRVSU 9<br>CNRVSU 9<br>CNRVSU 10<br>USRVFL 2                                                 | -5.767E-8<br>7.906E-8<br>3.540E-7<br>4.855E-7<br>-1.756E-8<br>2.410E-7<br>1.361E-6<br>1.511E-6<br>1.862E-7<br>-1.123E-7<br>7.499E-7<br>1.583E-6<br>3.278E-6<br>4.587E-6<br>2.856E-6<br>3.635E-6<br>1.127E-5<br>3.082E-8                                                 | 8.445E-8<br>1.173E-7<br>1.503E-7<br>3.009E-7<br>3.510E-7<br>5.180E-7<br>7.299E-7<br>1.206E-6<br>7.642E-8<br>2.809E-7<br>6.915E-7<br>1.564E-6<br>1.707E-6<br>2.013E-6<br>2.550E-6<br>2.243E-6<br>3.182E-6<br>3.712E-8                                                                         | -0.98<br>1.09<br>3.64<br>2.42<br>-0.07<br>0.72<br>3.07<br>2.18<br>3.77<br>-0.52<br>1.67<br>1.64<br>2.85<br>3.43<br>1.58<br>2.42<br>5.72<br>1.30                                                  | 5.922E-6<br>7.174E-6<br>9.361E-6<br>1.957E-5<br>2.548E-5<br>3.310E-5<br>4.299E-5<br>6.767E-5<br>4.751E-6<br>2.163E-5<br>4.424E-5<br>9.466E-5<br>1.116E-4<br>1.291E-4<br>1.773E-4<br>1.467E-4<br>1.858E-4<br>2.341E-6                                                             | $\begin{array}{c} 0.20\\ 0.23\\ 0.23\\ 0.22\\ 0.19\\ 0.22\\ 0.24\\ 0.25\\ 0.23\\ 0.18\\ 0.22\\ 0.23\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.24\\ 0.22\\ 0.24\\ 0.22\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| USRVSP 3<br>USRVSP 4<br>USRVSP 5<br>USRVSP 6<br>USRVSP 7<br>USRVSP 7<br>USRVSP 9<br>USRVSP 9<br>USRVSP 9<br>USRVSP 0<br>CNRVSU 2<br>CNRVSU 3<br>CNRVSU 3<br>CNRVSU 4<br>CNRVSU 5<br>CNRVSU 6<br>CNRVSU 7<br>CNRVSU 8<br>CNRVSU 8<br>CNRVSU 9<br>CNRVSU 9<br>CNRVSU 10<br>USRVFL 2<br>USRVFL 3                         | -5.767E-8<br>7.906E-8<br>3.540E-7<br>4.855E-7<br>-1.756E-8<br>2.410E-7<br>1.361E-6<br>1.511E-6<br>1.862E-7<br>-1.123E-7<br>7.499E-7<br>1.583E-6<br>3.278E-6<br>4.587E-6<br>2.856E-6<br>3.635E-6<br>1.127E-5<br>3.082E-8<br>6.137E-8                                     | 8.445E-8<br>1.173E-7<br>1.503E-7<br>3.009E-7<br>3.510E-7<br>5.180E-7<br>7.299E-7<br>1.206E-6<br>7.642E-8<br>2.809E-7<br>6.915E-7<br>1.564E-6<br>1.707E-6<br>2.013E-6<br>2.550E-6<br>2.243E-6<br>3.182E-6<br>3.712E-8<br>6.272E-8                                                             | -0.98<br>1.09<br>3.64<br>2.42<br>-0.07<br>0.72<br>3.07<br>2.18<br>3.77<br>-0.52<br>1.67<br>1.64<br>2.85<br>3.43<br>1.58<br>2.42<br>5.72<br>1.30<br>1.53                                          | 5.922E-6<br>7.174E-6<br>9.361E-6<br>1.957E-5<br>2.548E-5<br>3.310E-5<br>4.299E-5<br>6.767E-5<br>4.751E-6<br>2.163E-5<br>4.424E-5<br>9.466E-5<br>1.116E-4<br>1.291E-4<br>1.773E-4<br>1.467E-4<br>1.858E-4<br>2.341E-6<br>3.957E-6                                                 | $\begin{array}{c} 0.20\\ 0.23\\ 0.23\\ 0.22\\ 0.19\\ 0.22\\ 0.24\\ 0.25\\ 0.23\\ 0.18\\ 0.22\\ 0.23\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.24\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\$ |
| USRVSP 3<br>USRVSP 4<br>USRVSP 5<br>USRVSP 6<br>USRVSP 7<br>USRVSP 7<br>USRVSP 9<br>USRVSP 9<br>USRVSP 9<br>USRVSP 0<br>CNRVSU 2<br>CNRVSU 2<br>CNRVSU 3<br>CNRVSU 4<br>CNRVSU 5<br>CNRVSU 6<br>CNRVSU 7<br>CNRVSU 8<br>CNRVSU 8<br>CNRVSU 9<br>CNRVSU 9<br>CNRVSU 10<br>USRVFL 2<br>USRVFL 3<br>USRVFL 4             | -5.767E-8<br>7.906E-8<br>3.540E-7<br>4.855E-7<br>-1.756E-8<br>2.410E-7<br>1.361E-6<br>1.511E-6<br>1.862E-7<br>-1.123E-7<br>7.499E-7<br>1.583E-6<br>3.278E-6<br>4.587E-6<br>2.856E-6<br>3.635E-6<br>1.127E-5<br>3.082E-8<br>6.137E-8<br>1.438E-7                         | 8.445E-8<br>1.173E-7<br>1.503E-7<br>3.009E-7<br>3.510E-7<br>5.180E-7<br>7.299E-7<br>1.206E-6<br>7.642E-8<br>2.809E-7<br>6.915E-7<br>1.564E-6<br>1.707E-6<br>2.013E-6<br>2.550E-6<br>2.243E-6<br>3.182E-6<br>3.712E-8<br>6.272E-8<br>7.324E-8                                                 | -0.98<br>1.09<br>3.64<br>2.42<br>-0.07<br>0.72<br>3.07<br>2.18<br>3.77<br>-0.52<br>1.67<br>1.64<br>2.85<br>3.43<br>1.58<br>2.42<br>5.72<br>1.30<br>1.53<br>2.62                                  | 5.922E-6<br>7.174E-6<br>9.361E-6<br>1.957E-5<br>2.548E-5<br>3.310E-5<br>4.299E-5<br>6.767E-5<br>4.751E-6<br>2.163E-5<br>4.424E-5<br>9.466E-5<br>1.116E-4<br>1.291E-4<br>1.291E-4<br>1.467E-4<br>1.858E-4<br>2.341E-6<br>3.957E-6<br>5.336E-6                                     | $\begin{array}{c} 0.20\\ 0.23\\ 0.23\\ 0.22\\ 0.19\\ 0.22\\ 0.24\\ 0.25\\ 0.23\\ 0.18\\ 0.22\\ 0.23\\ 0.23\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.20\\ 0.22\\ 0.22\\ 0.24\\ 0.22\\ 0.22\\ 0.22\\ 0.19\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| USRVSP 3<br>USRVSP 4<br>USRVSP 5<br>USRVSP 6<br>USRVSP 7<br>USRVSP 7<br>USRVSP 8<br>USRVSP 9<br>USRVSP 9<br>USRVSP 0<br>CNRVSU 2<br>CNRVSU 3<br>CNRVSU 3<br>CNRVSU 4<br>CNRVSU 5<br>CNRVSU 6<br>CNRVSU 7<br>CNRVSU 8<br>CNRVSU 8<br>CNRVSU 9<br>CNRVSU 9<br>CNRVSU 10<br>USRVFL 2<br>USRVFL 3<br>USRVFL 4<br>USRVFL 5 | -5.767E-8<br>7.906E-8<br>3.540E-7<br>4.855E-7<br>-1.756E-8<br>2.410E-7<br>1.361E-6<br>1.511E-6<br>1.862E-7<br>-1.123E-7<br>7.499E-7<br>1.583E-6<br>3.278E-6<br>4.587E-6<br>2.856E-6<br>3.635E-6<br>1.127E-5<br>3.082E-8<br>6.137E-8<br>1.438E-7<br>1.420E-7             | 8.445E-8<br>1.173E-7<br>1.503E-7<br>3.009E-7<br>3.510E-7<br>5.180E-7<br>7.299E-7<br>1.206E-6<br>7.642E-8<br>2.809E-7<br>6.915E-7<br>1.564E-6<br>1.707E-6<br>2.013E-6<br>2.550E-6<br>2.243E-6<br>3.182E-6<br>3.712E-8<br>6.272E-8<br>7.324E-8<br>1.260E-7                                     | $\begin{array}{c} -0.98\\ 1.09\\ 3.64\\ 2.42\\ -0.07\\ 0.72\\ 3.07\\ 2.18\\ 3.77\\ -0.52\\ 1.67\\ 1.64\\ 2.85\\ 3.43\\ 1.58\\ 2.42\\ 5.72\\ 1.30\\ 1.53\\ 2.62\\ 1.59\end{array}$                | 5.922E-6<br>7.174E-6<br>9.361E-6<br>1.957E-5<br>2.548E-5<br>3.310E-5<br>4.299E-5<br>6.767E-5<br>4.751E-6<br>2.163E-5<br>4.424E-5<br>9.466E-5<br>1.116E-4<br>1.291E-4<br>1.291E-4<br>1.467E-4<br>1.467E-4<br>1.858E-4<br>2.341E-6<br>3.957E-6<br>5.336E-6<br>8.764E-6             | $\begin{array}{c} 0.20\\ 0.23\\ 0.23\\ 0.22\\ 0.19\\ 0.22\\ 0.24\\ 0.25\\ 0.23\\ 0.18\\ 0.22\\ 0.23\\ 0.23\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.24\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.19\\ 0.20\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| USRVSP 3<br>USRVSP 4<br>USRVSP 5<br>USRVSP 6<br>USRVSP 7<br>USRVSP 8<br>USRVSP 9<br>USRVSP 9<br>USRVSP 0<br>CNRVSU 2<br>CNRVSU 2<br>CNRVSU 3<br>CNRVSU 3<br>CNRVSU 4<br>CNRVSU 5<br>CNRVSU 6<br>CNRVSU 7<br>CNRVSU 8<br>CNRVSU 9<br>CNRVSU 9<br>CNRVSU 10<br>USRVFL 2<br>USRVFL 3<br>USRVFL 4<br>USRVFL 5<br>USRVFL 6 | -5.767E-8<br>7.906E-8<br>3.540E-7<br>4.855E-7<br>-1.756E-8<br>2.410E-7<br>1.361E-6<br>1.511E-6<br>1.862E-7<br>-1.123E-7<br>7.499E-7<br>1.583E-6<br>3.278E-6<br>3.635E-6<br>3.635E-6<br>1.127E-5<br>3.082E-8<br>6.137E-8<br>1.438E-7<br>1.420E-7<br>3.742E-7             | 8.445E-8<br>1.173E-7<br>1.503E-7<br>3.009E-7<br>3.510E-7<br>5.180E-7<br>7.299E-7<br>1.206E-6<br>7.642E-8<br>2.809E-7<br>6.915E-7<br>1.564E-6<br>1.707E-6<br>2.013E-6<br>2.550E-6<br>2.243E-6<br>3.182E-6<br>3.712E-8<br>6.272E-8<br>7.324E-8<br>1.260E-7<br>1.960E-7                         | $\begin{array}{c} -0.98\\ 1.09\\ 3.64\\ 2.42\\ -0.07\\ 0.72\\ 3.07\\ 2.18\\ 3.77\\ -0.52\\ 1.67\\ 1.64\\ 2.85\\ 3.43\\ 1.58\\ 2.42\\ 5.72\\ 1.30\\ 1.53\\ 2.62\\ 1.59\\ 3.00\\ \end{array}$      | 5.922E-6<br>7.174E-6<br>9.361E-6<br>1.957E-5<br>2.548E-5<br>3.310E-5<br>4.299E-5<br>6.767E-5<br>4.751E-6<br>2.163E-5<br>4.424E-5<br>9.466E-5<br>1.116E-4<br>1.291E-4<br>1.291E-4<br>1.467E-4<br>1.858E-4<br>2.341E-6<br>3.957E-6<br>5.336E-6<br>8.764E-6<br>1.209E-5             | 0.20<br>0.23<br>0.22<br>0.19<br>0.22<br>0.24<br>0.25<br>0.23<br>0.18<br>0.22<br>0.23<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.22<br>0.23<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.23<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.20<br>0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| USRVSP 3<br>USRVSP 4<br>USRVSP 5<br>USRVSP 6<br>USRVSP 7<br>USRVSP 8<br>USRVSP 9<br>USRVSP 9<br>USRVSP 0<br>CNRVSU 2<br>CNRVSU 2<br>CNRVSU 3<br>CNRVSU 4<br>CNRVSU 5<br>CNRVSU 6<br>CNRVSU 7<br>CNRVSU 8<br>CNRVSU 9<br>CNRVSU 9<br>CNRVSU 10<br>USRVFL 2<br>USRVFL 3<br>USRVFL 4<br>USRVFL 5<br>USRVFL 6<br>USRVFL 7 | -5.767E-8<br>7.906E-8<br>3.540E-7<br>4.855E-7<br>-1.756E-8<br>2.410E-7<br>1.361E-6<br>1.511E-6<br>1.862E-7<br>-1.123E-7<br>7.499E-7<br>1.583E-6<br>3.278E-6<br>3.635E-6<br>3.635E-6<br>1.127E-5<br>3.082E-8<br>6.137E-8<br>1.438E-7<br>1.420E-7<br>3.742E-7<br>1.434E-7 | 8.445E-8<br>1.173E-7<br>1.503E-7<br>3.009E-7<br>3.510E-7<br>5.180E-7<br>7.299E-7<br>1.206E-6<br>7.642E-8<br>2.809E-7<br>6.915E-7<br>1.564E-6<br>1.707E-6<br>2.013E-6<br>2.550E-6<br>2.243E-6<br>3.182E-6<br>3.182E-6<br>3.712E-8<br>6.272E-8<br>7.324E-8<br>1.260E-7<br>1.960E-7<br>2.451E-7 | $\begin{array}{c} -0.98\\ 1.09\\ 3.64\\ 2.42\\ -0.07\\ 0.72\\ 3.07\\ 2.18\\ 3.77\\ -0.52\\ 1.67\\ 1.64\\ 2.85\\ 3.43\\ 1.58\\ 2.42\\ 5.72\\ 1.30\\ 1.53\\ 2.62\\ 1.59\\ 3.00\\ 0.84 \end{array}$ | 5.922E-6<br>7.174E-6<br>9.361E-6<br>1.957E-5<br>2.548E-5<br>3.310E-5<br>4.299E-5<br>6.767E-5<br>4.751E-6<br>2.163E-5<br>4.424E-5<br>9.466E-5<br>1.116E-4<br>1.291E-4<br>1.291E-4<br>1.467E-4<br>1.858E-4<br>2.341E-6<br>3.957E-6<br>5.336E-6<br>8.764E-6<br>1.209E-5<br>1.685E-5 | 0.20<br>0.23<br>0.22<br>0.19<br>0.22<br>0.24<br>0.25<br>0.23<br>0.18<br>0.22<br>0.23<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.23<br>0.23<br>0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| USRVSP 3<br>USRVSP 4<br>USRVSP 5<br>USRVSP 6<br>USRVSP 7<br>USRVSP 8<br>USRVSP 9<br>USRVSP 9<br>USRVSP 0<br>CNRVSU 2<br>CNRVSU 2<br>CNRVSU 3<br>CNRVSU 3<br>CNRVSU 4<br>CNRVSU 5<br>CNRVSU 6<br>CNRVSU 7<br>CNRVSU 8<br>CNRVSU 9<br>CNRVSU 9<br>CNRVSU 10<br>USRVFL 2<br>USRVFL 3<br>USRVFL 4<br>USRVFL 5<br>USRVFL 6 | -5.767E-8<br>7.906E-8<br>3.540E-7<br>4.855E-7<br>-1.756E-8<br>2.410E-7<br>1.361E-6<br>1.511E-6<br>1.862E-7<br>-1.123E-7<br>7.499E-7<br>1.583E-6<br>3.278E-6<br>3.635E-6<br>3.635E-6<br>1.127E-5<br>3.082E-8<br>6.137E-8<br>1.438E-7<br>1.420E-7<br>3.742E-7             | 8.445E-8<br>1.173E-7<br>1.503E-7<br>3.009E-7<br>3.510E-7<br>5.180E-7<br>7.299E-7<br>1.206E-6<br>7.642E-8<br>2.809E-7<br>6.915E-7<br>1.564E-6<br>1.707E-6<br>2.013E-6<br>2.550E-6<br>2.243E-6<br>3.182E-6<br>3.712E-8<br>6.272E-8<br>7.324E-8<br>1.260E-7<br>1.960E-7                         | $\begin{array}{c} -0.98\\ 1.09\\ 3.64\\ 2.42\\ -0.07\\ 0.72\\ 3.07\\ 2.18\\ 3.77\\ -0.52\\ 1.67\\ 1.64\\ 2.85\\ 3.43\\ 1.58\\ 2.42\\ 5.72\\ 1.30\\ 1.53\\ 2.62\\ 1.59\\ 3.00\\ \end{array}$      | 5.922E-6<br>7.174E-6<br>9.361E-6<br>1.957E-5<br>2.548E-5<br>3.310E-5<br>4.299E-5<br>6.767E-5<br>4.751E-6<br>2.163E-5<br>4.424E-5<br>9.466E-5<br>1.116E-4<br>1.291E-4<br>1.291E-4<br>1.467E-4<br>1.858E-4<br>2.341E-6<br>3.957E-6<br>5.336E-6<br>8.764E-6<br>1.209E-5             | 0.20<br>0.23<br>0.22<br>0.19<br>0.22<br>0.24<br>0.25<br>0.23<br>0.18<br>0.22<br>0.23<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.23<br>0.22<br>0.22<br>0.23<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.23<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.20<br>0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

.

Table A9. Continued.

| Index    | Bias<br>Estimate | Bias<br>Std. Error | Percent<br>Bias | NLLS Est.<br>Corrected | CV for<br>Corrected |
|----------|------------------|--------------------|-----------------|------------------------|---------------------|
|          |                  | Stu: Enoi          |                 | for Bias               | Estimate            |
| USRVFL10 | 1.628E-6         | 1.564E-6           | 1.82            | 8.759E-5               | 0.25                |
| MARVSP 1 | -3.164E-8        | 6.429E-8           | -1.04           | 3.086E-6               | 0.29                |
| MARVSP 2 | 8.845E-8         | 3.945E-8           | 4.15            | 2.042E-6               | 0.27                |
| MARVSP 3 | 4.646E-8         | 2.712E-8           | 4.14            | 1.077E-6               | 0.36                |
| USCPUE 4 | 5.078E-7         | 2.956E-7           | 2.85            | 1.732E-5               | 0.24                |
| USCPUE 5 | 4.305E-7         | 3.702E-7           | 1.52            | 2.796E-5               | 0.19                |
| USCPUE 6 | 1.285E-6         | 5.288E-7           | 3.64            | 3.399E-5               | 0.22                |
| USCPUE 7 | 9.405E-7         | 6.372E-7           | 2.42            | 3.796E-5               | 0.24                |
| USCPUE 8 | 5.232E-7         | 5.691E-7           | 1.28            | 4.048E-5               | 0.20                |
| USCPUE 9 | 6.536E-7         | 5.749E-7           | 1.71            | 3.758E-5               | 0.22                |
| CNCPUE 4 | -7.343E-8        | 1.383E-6           | -0.08           | 9.134E-5               | 0.21                |
| CNCPUE 5 | 4.180E-6         | 2.586E-6           | 2.59            | 1.572E-4               | 0.23                |
| CNCPUE 6 | 9.362E-6         | 3.210E-6           | 4.41            | 2.029E-4               | 0.22                |
| CNCPUÉ 7 | 9.004E-6         | 3.530E-6           | 3.73            | 2.321E-4               | 0.22                |
| CNCPUE 8 | 1.222E-6         | 2.921E-6           | 0.58            | 2.084E-4               | 0.20                |
| CNCPUE 9 | 5.983E-6         | 2.552E-6           | 3.34            | 1.730E-4               | 0.21                |
| USCPUEAG | 3.133E-6         | 1.540E-6           | 3.45            | 8.762E-5               | 0.25                |
| USCPUEAG | 5.910E-7         | 2.603E-7           | 3.13            | 1.831E-5               | 0.20                |

# Bootstrap Output Variable: F t Full vector of age-specific terminal F's (in 1992)

| Age                                  | NLLS<br>Estimate                                                                                                | Bootstrap<br>Mean                                                                                          | Bootstrap<br>Std. Error                                               | CV for<br>NLLS SOLN                                                                                                   |                                                                                       |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 2                                    | 5.735E-4                                                                                                        | 6.286E-4                                                                                                   | 2.509E-4                                                              | 0.44                                                                                                                  |                                                                                       |
| 3                                    | 9.523E-2                                                                                                        | 9.781E-2                                                                                                   | 3.124E-2                                                              | 0.33                                                                                                                  |                                                                                       |
| 4                                    | 1.611E-1                                                                                                        | 1.659E-1                                                                                                   | 4.467E-2                                                              | 0.28                                                                                                                  |                                                                                       |
| 5                                    | 2.348E-1                                                                                                        | 2.380E-1                                                                                                   | 5.789E-2                                                              | 0.25                                                                                                                  |                                                                                       |
| 6                                    | 4.797E-1                                                                                                        | 5.403E-1                                                                                                   | 1.877E-1                                                              | 0.39                                                                                                                  |                                                                                       |
| 7                                    | 6.544E-1                                                                                                        | 6.978E-1                                                                                                   | 2.282E-1                                                              | 0.35                                                                                                                  |                                                                                       |
| 8                                    | 7.857E-1                                                                                                        | 8.067E-1                                                                                                   | 2.543E-1                                                              | 0.32                                                                                                                  | 1                                                                                     |
| 9                                    | 7.200E-1                                                                                                        | 7.523E-1                                                                                                   | 1.497E-1                                                              | 0.21                                                                                                                  |                                                                                       |
| 10                                   | 7.200E-1                                                                                                        | 7.523E-1                                                                                                   | 1.497E-1                                                              | 0.21                                                                                                                  |                                                                                       |
| 11                                   | 7.200E-1                                                                                                        | 7.523E-1                                                                                                   | 1.497E-1                                                              | 0.21                                                                                                                  | * <b>.</b>                                                                            |
| 12+                                  | 7.200E-1                                                                                                        | 7.523E-1                                                                                                   | 1.497E-1                                                              | 0.21                                                                                                                  |                                                                                       |
| Index                                | Bias                                                                                                            | Bias                                                                                                       | Percent                                                               | NLLS Est.                                                                                                             | CV for                                                                                |
|                                      | Estimate                                                                                                        | Std. Error                                                                                                 | Bias                                                                  | Corrected<br>for Bias                                                                                                 | Corrected<br>Estimate                                                                 |
|                                      | Estimate                                                                                                        | Std. Error                                                                                                 | Bias                                                                  | Corrected<br>for Bias                                                                                                 | Corrected                                                                             |
| 2                                    |                                                                                                                 |                                                                                                            |                                                                       | Corrected                                                                                                             | Corrected<br>Estimate                                                                 |
| 2 3                                  | Estimate<br>5.515E-5                                                                                            | <b>Std. Error</b><br>1.774E-5                                                                              | Bias<br>9.62<br>2.72                                                  | Corrected<br>for Bias<br>5.183E-4                                                                                     | Corrected<br>Estimate                                                                 |
| 2<br>3<br>4                          | <b>Estimate</b><br>5.515E-5<br>2.587E-3                                                                         | Std. Error<br>1.774E-5<br>2.209E-3                                                                         | Bias<br>9.62<br>2.72<br>2.99                                          | Corrected<br>for Bias<br>5.183E-4<br>9.264E-2                                                                         | Corrected<br>Estimate<br>0.48<br>0.34                                                 |
| 2<br>3<br>4<br>5                     | <b>Estimate</b><br>5.515E-5<br>2.587E-3<br>4.817E-3                                                             | <b>Std. Error</b><br>1.774E-5<br>2.209E-3<br>3.159E-3                                                      | Bias<br>9.62<br>2.72                                                  | Corrected<br>for Bias<br>5.183E-4<br>9.264E-2<br>1.563E-1                                                             | Corrected<br>Estimate<br>0.48<br>0.34<br>0.29                                         |
| 2<br>3<br>4<br>5<br>6<br>7           | <b>Estimate</b><br>5.515E-5<br>2.587E-3<br>4.817E-3<br>3.240E-3                                                 | <b>Std. Error</b><br>1.774E-5<br>2.209E-3<br>3.159E-3<br>4.093E-3                                          | Bias<br>9.62<br>2.72<br>2.99<br>1.38                                  | Corrected<br>for Bias<br>5.183E-4<br>9.264E-2<br>1.563E-1<br>2.315E-1                                                 | Corrected<br>Estimate<br>0.48<br>0.34<br>0.29<br>0.25                                 |
| 2<br>3<br>4<br>5                     | <b>Estimate</b><br>5.515E-5<br>2.587E-3<br>4.817E-3<br>3.240E-3<br>6.052E-2                                     | <b>Std. Error</b><br>1.774E-5<br>2.209E-3<br>3.159E-3<br>4.093E-3<br>1.327E-2                              | Bias<br>9.62<br>2.72<br>2.99<br>1.38<br>12.62                         | Corrected<br>for Bias<br>5.183E-4<br>9.264E-2<br>1.563E-1<br>2.315E-1<br>4.192E-1                                     | Corrected<br>Estimate<br>0.48<br>0.34<br>0.29<br>0.25<br>0.45                         |
| 2<br>3<br>4<br>5<br>6<br>7           | <b>Estimate</b><br>5.515E-5<br>2.587E-3<br>4.817E-3<br>3.240E-3<br>6.052E-2<br>4.346E-2                         | <b>Std. Error</b><br>1.774E-5<br>2.209E-3<br>3.159E-3<br>4.093E-3<br>1.327E-2<br>1.614E-2                  | Bias<br>9.62<br>2.72<br>2.99<br>1.38<br>12.62<br>6.64                 | Corrected<br>for Bias<br>5.183E-4<br>9.264E-2<br>1.563E-1<br>2.315E-1<br>4.192E-1<br>6.109E-1                         | Corrected<br>Estimate<br>0.48<br>0.34<br>0.29<br>0.25<br>0.45<br>0.37                 |
| 2<br>3<br>4<br>5<br>6<br>7<br>8      | <b>Estimate</b><br>5.515E-5<br>2.587E-3<br>4.817E-3<br>3.240E-3<br>6.052E-2<br>4.346E-2<br>2.105E-2             | Std. Error<br>1.774E-5<br>2.209E-3<br>3.159E-3<br>4.093E-3<br>1.327E-2<br>1.614E-2<br>1.798E-2             | Bias<br>9.62<br>2.72<br>2.99<br>1.38<br>12.62<br>6.64<br>2.68         | Corrected<br>for Bias<br>5.183E-4<br>9.264E-2<br>1.563E-1<br>2.315E-1<br>4.192E-1<br>6.109E-1<br>7.646E-1             | Corrected<br>Estimate<br>0.48<br>0.34<br>0.29<br>0.25<br>0.45<br>0.37<br>0.33         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | <b>Estimate</b><br>5.515E-5<br>2.587E-3<br>4.817E-3<br>3.240E-3<br>6.052E-2<br>4.346E-2<br>2.105E-2<br>3.225E-2 | Std. Error<br>1.774E-5<br>2.209E-3<br>3.159E-3<br>4.093E-3<br>1.327E-2<br>1.614E-2<br>1.798E-2<br>1.058E-2 | Bias<br>9.62<br>2.72<br>2.99<br>1.38<br>12.62<br>6.64<br>2.68<br>4.48 | Corrected<br>for Bias<br>5.183E-4<br>9.264E-2<br>1.563E-1<br>2.315E-1<br>4.192E-1<br>6.109E-1<br>7.646E-1<br>6.878E-1 | Corrected<br>Estimate<br>0.48<br>0.34<br>0.29<br>0.25<br>0.45<br>0.37<br>0.33<br>0.22 |

### Table A9. Continued.

| Ages 9-11 | NLLS<br>Estimate | Bootstrap<br>Mean  |                 | Bootstrap<br>Std. Error             | CV for<br>NLLS SOLN          |
|-----------|------------------|--------------------|-----------------|-------------------------------------|------------------------------|
|           | 7.200E-1         | 7.523E-1           |                 | 1.497E-1                            | 0.21                         |
| Ages 9-11 | Bias<br>Estimate | Bias<br>Std. Error | Percent<br>Bias | NLLS Estimate<br>Corrected for Bias | CV for<br>Corrected Estimate |
|           | 3.225E-2         | 1.058E-2           | 4.48            | 6.878E-1                            | 0.22                         |

**Bootstrap Output Variable: F full t** 

Bootstrap Output Variable: SSB spawn t SSB (males & females) at start of spawning season (1992)

| SSB | NLLS<br>Estimate | Bootstrap<br>Mean  |                 | Bootstrapp<br>Std. Error            | CV for<br>Corrected Estimate |
|-----|------------------|--------------------|-----------------|-------------------------------------|------------------------------|
|     | 1.251E5          | 1.288E5            |                 | 1.438E4                             | 0.11                         |
| SSB | Bias<br>Estimate | Bias<br>Std. Error | Percent<br>Bias | NLLS Estimate<br>Corrected for Bias |                              |
|     | 3.683E3          | 1.017E3            | 2.94            | 1.214E5                             | 0.12                         |

mates from the calibrated VPA. Spawning stock biomass and recruitment (age 2 stock size) for corresponding year classes was plotted from 1972 through 1991 (Figure A8). The median slope was computed to be 0.30 R/SSB which computes to an inverse of 3.3 SSB/R.

### Yield and Spawning Stock Biomass per Recruit

Yield per recruit and spawning stock biomass per recruit analyses were performed using the method of Thompson and Bell (1934). Mean weights at age for application to yield per recruit were computed as the arithmetic average of catch mean weights at age (Table A4) over the 1989-1992 period. Mean weights at age for application to SSB per recruit were computed as the arithmetic average of January 1 stock mean weight at age estimates over the 1989-1992 period. The maturation ogive was taken from Mayo *et al.* (1989) since their data were based on both U.S. and Canadian samples collected throughout the range of the stock.

Partial recruitment for input to the yield and SSB per recruit analysis and short term projections was computed from the most recent four years of the F matrix derived from the VPA (Table A6). Geometric mean F at age was computed for the 1988-1991 period and divided by the geometric mean of the age 7+ F to derive the final partial recruitment vector. Results are similar to those obtained from the SVPA.

The yield per recruit analyses indicate that  $F_{0.1} = 0.20$  and  $F_{max} = 0.76$  (Table A10, Figure A9). Mapping of the SSB/R value computed from the stock-recruitment curve indicates an  $F_{med}$  value of about 0.47 corresponding to 25% MSP. The  $F_{2000}$  is estimated at 0.65.

### SHORT-TERM PROJECTIONS

### Recruitment

Catches and stock sizes were projected through 1995 at various levels of F and recruitment assuming a status quo F in 1993 (Figure A10). The exploitation pattern, mean weights at age, and maturation ogive were as described earlier for the yield and SSB per recruit analyses. Survivors at ages 4-12+ in 1993 were taken from the final calibrated VPA. Age 2 recruitment in 1993 (1991 year class) was estimated from RCT3. regressions between Massachusetts spring age 1 stock sizes and VPA age 2 stock numbers for corresponding 1972-1989 year classes with shrinkage to the VPA mean applied. Preliminary RCT3 regressions had indicated poor correspondence between NEFSC spring and autumn age 2 indices and the VPA age 2 stock sizes. The estimate of the 1990 year class from RCT3 (34.2

S. 9-9-

Table A10. Results of the yield-per-recruit analysis

|         |                                                                           | NEFC \<br>Ver.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ompson and 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -<br>                                                                                                                                                                                                                          |
|---------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Run Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | te: 22- 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1993; Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | : 09:09:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·                                                                                                                                                                                                                              |
|         |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UPDATED AVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AND MAT                                     | VECTORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                              |
| ×'      |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rore spaw<br>fore spaw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ning: .0000<br>ning: .0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
| · .     | Natur                                                                     | al Mort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tality i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | is Consta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nt at: .200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
|         |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ; Last ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e is: 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
|         |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a PLUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Noto nod Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
|         |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | polypr.c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mats, and Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | an wts fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ORITILE:                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
|         |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •••••                                       | • • • ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                |
|         | Age-S                                                                     | pecitic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | data for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yield per R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ecruit An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | alysis                                      | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                              |
|         | Age                                                                       | Fish<br>Patt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lat Mort<br>Pattern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Proportion<br>Mature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | i Average<br>Catch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e Weights<br>Stock                          | <b>3</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                |
|         |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·····                                       | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                              |
|         | 1                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .0090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .094                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
|         | 2                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .0750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
|         | 3                                                                         | .05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .3450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
|         | 4<br>5                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )4 <b>8</b><br> 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .7190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
| ÷.,     | 6                                                                         | .89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .9680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
| . :<br> | 7                                                                         | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
|         | . 8                                                                       | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·· · ·                                                                                                                                                                                                                         |
|         | 9                                                                         | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
|         | 10                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5. S.                                                                                                                                                                                                                          |
| 4.1     | - 11                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                |
|         | 12                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
| N. 84   | 13                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
|         | 14                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +                                                                                                                                                                                                                              |
|         | 15                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
| ·       | 16+                                                                       | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.403                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
|         |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
|         |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r Recruii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t Analysis f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
|         |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 1007 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AND MAT                                     | 1007000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                |
|         |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JPDATED AVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WTS, FPA <u>t</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
| •       | Slope                                                                     | e of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e Yield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /Recruit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JPDATED AVE<br>Curve at F=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WTS_FPAT_<br>0.00:>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.691                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - · ·                                                                                                                                                                                                                          |
|         | SLope                                                                     | e of th<br>level a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e Yield<br>t slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I/Recruit<br>≖1/10 of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JPDATED AVE<br>Curve at F=<br>the above s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>WTS, FPAT</u><br>0.00:><br>Lope (F0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.691<br>):                                | 9<br>> .199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                              |
|         | SLope<br>F                                                                | e of th<br>level a<br>field/R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e Yield<br>t slope<br>ecruit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <pre>I/Recruit =1/10 of correspon</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>WTS, FPAT</u><br>0.00:><br>lope (F0.1<br>1:>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.691<br><br>.840                          | 9<br>> .199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                              |
| •••     | SLope<br>F                                                                | e of th<br>level a<br>(ield/R<br>level t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e Yield<br>t slope<br>ecruit<br>c produ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l/Recruit<br>≖1/10 of<br>correspor<br>ce Maximu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>Jm Yield/Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.691<br> ):<br>.840<br>():                | 9<br>> .199<br>1<br>> .763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                              |
| •       | SLope<br>F                                                                | e of th<br>level a<br>(ield/R<br>level t<br>(ield/R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e Yield<br>t slope<br>ecruit<br>o produ<br>ecruit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I/Recruit<br>≈1/10 of<br>correspor<br>ice Maximu<br>correspor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>X:>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.691<br><br>.840<br>():<br>.979           | 9<br>> .199<br>1<br>> .763<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                              |
|         | SLope<br>F<br>F<br>F                                                      | e of th<br>level a<br>(ield/R<br>level t<br>(ield/R<br>level a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e Yield<br>t slope<br>ecruit<br>o produ<br>ecruit<br>t 20 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <pre>//Recruit #1/10 of correspor ice Maximu correspor of Max Sp</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JPDATED AVE<br>Curve at F=<br>the above s<br>uding to F0.<br>Im Yield/Rec<br>uding to Fma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>ntial (F20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.691<br>.840<br>():<br>.979<br>)):        | 9<br>> .199<br>1<br>> .763<br>2<br>> .650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ · .                                                                                                                                                                                                                          |
| •       | Slope<br>F<br>F<br>F<br>S                                                 | e of th<br>level a<br>field/R<br>level t<br>field/R<br>level a<br>SSB/Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e Yield<br>t slope<br>ecruit<br>o produ<br>ecruit<br>t 20 %<br>ruit co<br>ield pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I/Recruit<br>≈1/10 of<br>correspor<br>ce Maxim<br>correspor<br>of Max Sp<br>prespondi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>Jm Yield/Rec<br>nding to Fma<br>Dawning Pote<br>ing to F20:<br>t Results fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>ntial (F20<br>r:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.697<br>.840<br>.979<br>.979<br><br>2.669 | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _ · · ·                                                                                                                                                                                                                        |
|         | Slope<br>F<br>F<br>F<br>S                                                 | e of th<br>level a<br>field/R<br>level t<br>field/R<br>level a<br>SSB/Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e Yield<br>t slope<br>ecruit<br>o produ<br>ecruit<br>t 20 %<br>ruit co<br>ield pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I/Recruit<br>≈1/10 of<br>correspor<br>ce Maxim<br>correspor<br>of Max Sp<br>prespondi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>Jm Yield/Rec<br>nding to Fma<br>awaring Pote<br>ing to F20:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>ntial (F20<br>r:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.697<br>.840<br>.979<br>.979<br><br>2.669 | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                |
|         | Slope<br>F<br>F<br>F<br>Listir<br>POLLOO                                  | e of th<br>level a<br>field/R<br>level t<br>field/R<br>level a<br>SSB/Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e Yield<br>t slope<br>ecruit<br>o produ<br>ecruit<br>t 20 %<br>ruit co<br>ield pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <pre>//Recruit<br/>#1/10 of<br/>correspor<br/>ice Maxim<br/>correspond<br/>of Max Sp<br/>inrespond<br/>r Recruit<br/>- 1993 L</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>Jm Yield/Rec<br>nding to Fma<br>Dawning Pote<br>ing to F20:<br>t Results fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>ntial (F2C<br>><br>r:<br>WTS, FPAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.697<br>.840<br>.979<br>.979<br><br>2.669 | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -<br>-<br>X MSP                                                                                                                                                                                                                |
|         | Slope<br>F<br>F<br>F<br>Listir<br>POLLOO                                  | e of th<br>level a<br>field/R<br>level t<br>field/R<br>level a<br>SSB/Rec<br>mg of Y<br>K 4VWX<br>MORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e Yield<br>t slope<br>ecruit<br>o produ<br>ecruit<br>t 20 %<br>ruit co<br>ield pe<br>+ SA 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /Recruit<br>#1/10 of<br>correspor<br>correspor<br>of Max Sp<br>prrespondi<br>r Recruit<br>- 1993 L<br>N TOTCTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>um Yield/Rec<br>ding to Fma<br>bawning Pote<br>ing to f20:<br>t Results fo<br>JPDATED AVE 1<br>HW TOTSTKN<br>10 5.5167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>ntial (F2C<br>><br>r:<br>WTS, FPAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.691<br>                                  | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4<br>VECTORS<br>SPNSTKW<br>13.3484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.00                                                                                                                                                                                                                         |
|         | Slope<br>F<br>F<br>F<br>Listir<br>POLLOO                                  | e of th<br>level a<br>field/R<br>level t<br>field/R<br>level a<br>SSB/Rec<br>mg of Y<br>K 4VWX<br>NORT<br>.00<br>.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e Yield<br>t slope<br>ecruit<br>o produ<br>ecruit<br>t 20 %<br>ruit co<br>ield pe<br>+ SA 5<br>TOTCTH<br>.0000<br>.1197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VRecruit<br>#1/10 of<br>correspor<br>ice Maxim<br>correspondi<br>irrespondi<br>r Recruit<br>- 1993 U<br>N TOTCTH<br>0 .0000<br>1 .5343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>Jm Yield/Rec<br>ading to Fma<br>Jawning Pote<br>ing to F20:<br>t Results fo<br>JPDATED AVE<br>INF TOTSTKN<br>00 5.5167<br>36 4.9207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>rtial (F2C<br>ritial (F2C<br>ritial (F2C<br>ritial (F2C<br>ritial (F2C<br>ritial (F2C)<br>ritial (F2C)                                                                                                                                                                                                                    | 11.691<br>                                  | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4<br>VECTORS<br>SPNSTKW<br>13.3484<br>8.9453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100.00<br>67.01                                                                                                                                                                                                                |
|         | Slope<br>F<br>F<br>F<br>Listir<br>POLLOO                                  | e of th<br>level a<br>field/R<br>level t<br>field/R<br>level a<br>SSB/Rec<br>mg of Y<br>K 4VWX<br>MORT<br>.00<br>.07<br>.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e Yield<br>t slope<br>ecruit<br>o produ<br>ecruit<br>t 20 %<br>ruit co<br>ield pe<br>+ SA 5<br>TOTCTH<br>.0000<br>.1197<br>.1906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <pre>//Recruit<br/>#1/10 of<br/>correspor<br/>correspondi<br/>of Max Sp<br/>inrespondi<br/>r Recruit<br/>- 1993 L<br/>N TOTCTH<br/>0 .0000<br/>1 .5343<br/>6 .7551</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>Jm Yield/Rec<br>adding to Fma<br>advantage to F20:<br>t Results fo<br>JPDATED AVE<br>W TOTSTKN<br>10 5.5167<br>16 4.9207<br>10 4.5684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>rtial (F2C<br>r:<br>WTS, FPAT<br>TOTSTKW<br>14.5850<br>10.1763<br>7.9026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.691<br>                                  | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4<br>VECTORS<br>SPNSTKW<br>13.3484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.00<br>67.01<br>50.02                                                                                                                                                                                                       |
|         | Slope<br>F<br>F<br>F<br>Listir<br>POLLOO                                  | e of th<br>level a<br>field/R<br>level t<br>level a<br>SSB/Rec<br>mg of Y<br>K 4VWX<br>HORT<br>.00<br>.07<br>.14<br>.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e Yield<br>t slope<br>ecruit<br>o produ<br>ecruit<br>t 20 %<br>ruit co<br>ield pe<br>+ SA 5<br>TOTCTH<br>.0000<br>.1197<br>.1906<br>.2281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <pre>//Recruit<br/>#1/10 of<br/>correspor<br/>correspond<br/>of Max Sp<br/>inrespondi<br/>in Recruit<br/>- 1993 L<br/>N TOTCTH<br/>0 .0000<br/>1 .5343<br/>6 .8400</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>Jm Yield/Rec<br>ing to F20:<br>t Results fo<br>JPDATED AVE<br>W TOTSTKN<br>10 5.5167<br>16 4.9207<br>10 4.5684<br>09 4.3826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>ntial (F2C<br>risk (FPAT<br>TOTSTKW<br>14.5850<br>10.1763<br>7.9026<br>6.8319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.691<br>                                  | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4<br>VECTORS<br>SPNSTKW<br>13.3484<br>8.9453<br>6.6771<br>5.6104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.00<br>67.01<br>50.02<br>42.03                                                                                                                                                                                              |
|         | Slopp<br>F  <br>F  <br>S<br>Listir<br>POLLOC                              | e of th<br>level a<br>field/R<br>level t<br>level a<br>SSB/Rec<br>mg of Y<br>K 4VWX<br>HORT<br>.00<br>.07<br>.14<br>.20<br>.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e Yield<br>t slope<br>ecruit<br>o produ<br>ecruit<br>t 20 %<br>ruit co<br>ield pe<br>+ SA 5<br>TOTCTH<br>.0000<br>.1197<br>.2281<br>.2381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /Recruit<br>#1/10 of<br>correspor<br>ce Maxim<br>correspond<br>of Max Sp<br>inrespond<br>r Recruit<br>- 1993 L<br>N TOTCTH<br>0 .0000<br>1 .5343<br>6 .7551<br>6 .8400<br>0 .8585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>Jm Yield/Rec<br>ing to Fma<br>Dawning Pote<br>ing to F20:<br>t Results fo<br>JPDATED AVE<br>t Results fo<br>JPDATED AVE<br>MW TOTSTKN<br>10 5.5167<br>36 4.9207<br>10 4.5684<br>29 4.3826<br>26 4.3334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>ntial (F2C<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.691<br>                                  | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4<br>VECTORS<br>SPNSTKW<br>13.3484<br>8.9453<br>6.6771<br>5.6104<br>5.3447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.00<br>67.01<br>50.02<br>42.03<br>40.04                                                                                                                                                                                     |
|         | Slopp<br>F  <br>F  <br>S<br>Listir<br>POLLOC                              | e of th<br>level a<br>field/R<br>ievel t<br>field/R<br>level a<br>SSB/Rec<br>mg of Y<br>K 4VWX<br>MORT<br>.00<br>.07<br>.14<br>.20<br>.22<br>.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e Yield<br>t slope<br>ecruit<br>o produ<br>ecruit<br>t 20 %<br>ruit co<br>ield pe<br>+ SA 5<br>TOTCTH<br>.0000<br>.1197<br>.2081<br>.2281<br>.2381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | //Recruit<br>#1/10 of<br>correspor<br>ce Maxim<br>correspondi<br>in respondi<br>r Recruit<br>- 1993 L<br>N TOTCTH<br>0 .0000<br>1 .5343<br>6 .8400<br>0 .6885<br>8 .9126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>Im Yield/Rec<br>nding to Fma<br>pawning Pote<br>ing to F20:<br>t Results fo<br>JPDATED AVE<br>t Results fo<br>JPDATED AVE<br>W TOTSTKN<br>10 5.5167<br>36 4.9207<br>10 4.5684<br>39 4.3826<br>36 4.3334<br>31 4.1642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>ntial (F2C<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.691<br>                                  | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4<br>VECTORS<br>SPNSTKW<br>13.3484<br>8.9453<br>6.6771<br>5.6104<br>5.3447<br>4.4869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.00<br>67.01<br>50.02<br>42.03<br>40.04<br>33.61                                                                                                                                                                            |
|         | Slopp<br>F  <br>F  <br>S<br>Listir<br>POLLOC                              | e of th<br>level a<br>field/R<br>ievel t<br>field/R<br>level a<br>SSB/Rec<br>mg of Y<br>XK 4VWX<br>MORT<br>.00<br>.07<br>.14<br>.20<br>.22<br>.29<br>.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e Yield<br>t slope<br>ecruit<br>o produ<br>ecruit<br>t 20 %<br>ruit co<br>ield pe<br>+ SA 5<br>TOTCTH<br>.0000<br>.1197<br>.2881<br>.2723<br>.2985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | //Recruit<br>#1/10 of<br>correspor<br>ice Maxim<br>correspondi<br>ir Recruit<br>- 1993 U<br>N TOTCTH<br>0 .0000<br>1 .5343<br>6 .7551<br>6 .8400<br>0 .8585<br>8 .9126<br>2 .9427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>Im Yield/Rec<br>nding to Fma<br>pawning Pote<br>ing to F20:<br>t Results fo<br>JPDATED AVE<br>t Results fo<br>JPDATED AVE<br>t Results fo<br>JPDATED AVE<br>t Results fo<br>JPDATED AVE<br>t A.3826<br>S6 4.3334<br>51 4.1642<br>25 4.0355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>ntial (F2C<br>><br>TOTSTKW<br>14.5850<br>10.1763<br>7.9026<br>6.8319<br>6.5649<br>5.7021<br>5.1057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.691<br>                                  | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4<br>VECTORS<br>SPNSTKW<br>13.3484<br>8.9453<br>6.6771<br>5.6104<br>5.3447<br>4.4869<br>3.8954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100.00<br>67.01<br>50.02<br>42.03<br>40.04<br>33.61<br>29.18                                                                                                                                                                   |
|         | Slopp<br>F  <br>F  <br>S<br>Listir<br>POLLOC                              | e of th<br>level a<br>field/R<br>level t<br>sSB/Rec<br>sSB/Rec<br>mg of Y<br>XK 4VWX<br>MORT<br>.00<br>.07<br>.14<br>.20<br>.22<br>.29<br>.36<br>.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e Yield<br>t slope<br>ecruit<br>o produ<br>ecruit<br>t 20 %<br>ruit co<br>ield pe<br>+ SA 5<br>TOTCTH<br>.0000<br>.1197<br>.1906<br>.2281<br>.2723<br>.2985<br>.3192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | //Recruit<br>#1/10 of<br>correspor<br>correspor<br>of Max Sr<br>irrespondi<br>r Recruit<br>- 1993 L<br>N TOTCTH<br>0 .0000<br>1 .5343<br>6 .7551<br>6 .8400<br>0 .8585<br>8 .9126<br>2 .9422<br>7 .9593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>JM Yield/Rec<br>ding to F20:<br>t Results fo<br>JPDATED AVE<br>t Results fo<br>JPDATED                                                                                                                                                                             | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>Trital (F2C<br>WTS, FPAT<br>TOTSTKW<br>14.5850<br>10.1763<br>7.9026<br>6.8319<br>6.5649<br>5.7021<br>5.1057<br>4.6707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.691<br>1.691<br>                         | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4<br>VECTORS<br>SPNSTKW<br>13.3484<br>8.9453<br>6.6771<br>5.6104<br>5.3447<br>4.4869<br>3.8954<br>3.8954<br>3.4651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.00<br>67.01<br>50.02<br>42.03<br>40.04<br>33.61<br>29.18<br>25.96                                                                                                                                                          |
|         | Slopp<br>F  <br>F  <br>S<br>Listir<br>POLLOC                              | e of th<br>level a<br>field/R<br>level t<br>field/R<br>level a<br>SSB/Rec<br>mg of Y<br>X 4VWX<br>HORT<br>.00<br>.07<br>.14<br>.20<br>.22<br>.29<br>.36<br>.43<br>.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e Yield<br>t slope<br>ecruit<br>t 20 %<br>ruit co<br>ield pe<br>+ SA 5<br>TOTCTH<br>.0000<br>.1197<br>.1906<br>.2281<br>.2723<br>.2885<br>.3192<br>.3362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | //Recruit<br>#1/10 of<br>correspor<br>ice Maximu<br>correspondi<br>r Recruit<br>- 1993 L<br>- 1994 L<br>- 1995 L<br>- 19 | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>Jm Yield/Rec<br>ding to F20:<br>tr Results fo<br>JPDATED AVE<br>tr Results fo<br>JPDATED                                                                                                                                                                                              | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>rital (F2C<br>ntial (F2C<br>ntial (F2C<br>TOTSTKW<br>14.5850<br>10.1763<br>7.9026<br>6.8319<br>6.5649<br>5.7021<br>5.1057<br>4.6707<br>4.3395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.691<br>                                  | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4<br>VECTORS<br>SPNSTKW<br>13.3484<br>8.9453<br>6.6771<br>5.6104<br>5.3447<br>4.4869<br>3.8954<br>3.4651<br>3.1385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.00<br>67.0<br>50.00<br>42.03<br>40.04<br>33.6<br>29.18<br>25.96<br>23.5                                                                                                                                                    |
|         | Slopp<br>F  <br>F  <br>S<br>Listir<br>POLLOC                              | e of th<br>level a<br>field/R<br>level t<br>field/R<br>level as<br>SSB/Rec<br>mg of Y<br>% 4VWX<br>MORT<br>.00<br>.07<br>.14<br>.20<br>.22<br>.29<br>.36<br>.43<br>.50<br>.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e Yield<br>t slope<br>ecruit<br>t 20 %<br>ruit co<br>ield pe<br>+ SA 5<br>TOTCTH<br>.0000<br>.1197<br>.2281<br>.2281<br>.2723<br>.2985<br>.3192<br>.3362<br>.3504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | //Recruit<br>=1/10 of<br>correspor-<br>correspondi-<br>correspondi-<br>r Recruit<br>- 1993 L<br>- 1                                                                                                                                                                                                                                                                                  | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>Jm Yield/Rec<br>ing to F20:<br>t Results fo<br>JPDATED AVE<br>t Results fo<br>JPDATED AVE<br>MW TOTSTKM<br>50 5.5167<br>36 4.9207<br>10 4.5684<br>39 4.3826<br>36 4.3334<br>51 4.1642<br>55 4.0355<br>36 3.9336<br>32 3.8505<br>32 3.7810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>ritial (F2C<br>ritial (F2C)<br>ritial (F2C)<br>rit                                                                                                                                                                                                                | 11.691<br>                                  | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4<br>VECTORS<br>SPNSTKW<br>13.3484<br>8.9453<br>6.6771<br>5.6104<br>5.3447<br>4.4869<br>3.8954<br>3.4651<br>3.1385<br>2.8819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100.00<br>67.01<br>50.02<br>42.03<br>40.04<br>33.61<br>29.18<br>25.96<br>23.51<br>21.55                                                                                                                                        |
|         | Slopp<br>F  <br>F  <br>S<br>Listir<br>POLLOC                              | e of th<br>level a<br>field/R<br>level t<br>sSB/Rec<br>mg of Y<br>K 4VWX<br>MORT<br>.00<br>.07<br>.14<br>.20<br>.22<br>.29<br>.36<br>.58<br>.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e Yield<br>t slope<br>ecruit<br>t 20 %<br>ruit co<br>ield pe<br>+ SA 5<br>TOTCTH<br>.0000<br>.1197<br>.1906<br>.2281<br>.2381<br>.2723<br>.3192<br>.3364<br>.3504<br>.3626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | //Recruit<br>=1/10 of<br>correspor-<br>correspondi<br>correspondi<br>rrespondi<br>rrecruit<br>- 1993 L<br>N TOTCTH<br>0 .0000<br>1 .5343<br>6 .8400<br>0 .8585<br>8 .9126<br>2 .9423<br>5 .9693<br>9 .9750<br>6 .9779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>Jm Yield/Rec<br>ing to F20:<br>tr Results fo<br>JPDATED AVE<br>tr Results fo<br>JPDATED AVE<br>fr Results fo<br>JPDATED                                                                                                                                                                                               | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>rtial (F2C<br>TOTSTKW<br>14.5850<br>10.1763<br>7.9026<br>6.8319<br>6.5649<br>5.7021<br>5.7021<br>4.6707<br>4.3395<br>4.0786<br>3.8671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.691<br>                                  | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4<br>VECTORS<br>SPNSTKW<br>13.3484<br>8.9453<br>6.6771<br>5.6104<br>5.3447<br>4.4869<br>3.8954<br>3.4651<br>3.1385<br>2.8819<br>2.6747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.00<br>67.01<br>50.02<br>42.03<br>40.04<br>33.61<br>29.18<br>25.96<br>23.51<br>21.55<br>20.04                                                                                                                               |
|         | Slopp<br>F  <br>F  <br>S<br>Listir<br>POLLOC                              | e of th<br>level a<br>field/R<br>level t<br>sSB/Rec<br>mg of Y<br>K 4VWX<br>MORT<br>.00<br>.07<br>.14<br>.20<br>.22<br>.29<br>.36<br>.43<br>.50<br>.58<br>.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e Yield<br>t slope<br>ecruit<br>o produ<br>ecruit<br>t 20 %<br>ruit co<br>ield pe<br>+ SA 5<br>TOTCTH<br>.1906<br>.2281<br>.2381<br>.2723<br>.3192<br>.3362<br>.3504<br>.3626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | //Recruit<br>#1/10 of<br>correspor-<br>correspondi<br>correspondi<br>rrespondi<br>r Recruit<br>- 1993 L<br>N TOTCTH<br>- 1993 L<br>N TOTCTH<br>- 1993 L<br>- 19                                                                                                                                                                                                                                                                                  | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>Jm Yield/Rec<br>am Yield/Rec<br>ing to f20:<br>t Results fo<br>JPDATED AVE<br>t Results                                                                                                                                                                            | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>ntial (F2C<br>WTS, FPAT<br>TOTSTKW<br>14.5850<br>10.1763<br>7.9026<br>6.8319<br>6.5649<br>5.7021<br>5.1057<br>4.6707<br>4.6707<br>4.3395<br>4.0786<br>3.8671<br>3.8618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.691<br>                                  | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4<br>VECTORS<br>SPNSTKW<br>13.3484<br>8.9453<br>6.6771<br>5.6104<br>5.3447<br>4.4869<br>3.8954<br>3.4651<br>3.1385<br>2.8819<br>2.6747<br>2.6694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.00<br>67.01<br>50.02<br>42.03<br>40.04<br>33.61<br>29.18<br>25.96<br>23.51<br>21.55<br>20.04<br>20.00                                                                                                                      |
|         | Slopp<br>F  <br>F  <br>F  <br>S<br>Listir<br>POLLOC<br>F0.1               | e of th<br>level a<br>field/R<br>level t<br>sSB/Rec<br>ng of Y<br>K 4VWX<br>HORT<br>.00<br>.07<br>.14<br>.20<br>.22<br>.29<br>.36<br>.43<br>.50<br>.58<br>.65<br>.65<br>.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e Yield<br>t slope<br>ecruit<br>o produ<br>ecruit<br>t 20 %<br>ruit co<br>ield pe<br>+ SA 5<br>TOTCTH<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | //Recruit<br>#1/10 of<br>correspor<br>of Max Sp<br>inrespondi<br>r Recruit<br>- 1993 L<br>N TOTCTH<br>- 1993 L<br>N TOTCTH<br>- 1993 L<br>N TOTCTH<br>- 1993 L<br>- 1993 | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>Jm Yield/Rec<br>ing to F20:<br>t Results fo<br>JPDATED AVE<br>t Results fo<br>JPDATED A                                                                                                                                                                            | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>ntial (F2C<br>)<br>TOISTKW<br>14.5850<br>10.1763<br>7.9026<br>6.8319<br>6.5649<br>5.7021<br>5.1057<br>4.6707<br>4.3395<br>4.0786<br>3.8671<br>3.8618<br>3.6919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.691<br>                                  | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4<br>VECTORS<br>SPNSTKW<br>13.3484<br>8.9453<br>6.6771<br>5.6104<br>5.3447<br>4.4869<br>3.8954<br>3.4651<br>3.1385<br>2.8819<br>2.6747<br>2.6694<br>2.5035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.00<br>67.01<br>50.02<br>42.03<br>40.04<br>33.61<br>29.18<br>25.96<br>23.51<br>21.55<br>20.04<br>20.00<br>18.75                                                                                                             |
|         | Slopp<br>F  <br>F  <br>S<br>Listir<br>POLLOC                              | e of th<br>level a<br>field/R<br>level t<br>sSB/Rec<br>mg of Y<br>% 4VWX<br>HORT<br>.00<br>.07<br>.14<br>.20<br>.22<br>.29<br>.36<br>.43<br>.58<br>.65<br>.65<br>.72<br>.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e Yield<br>t slope<br>ecruit<br>o produ<br>ecruit<br>t 20 %<br>ruit co<br>ield pe<br>+ SA 5<br>TOTCTH<br>.0000<br>.1197<br>.2281<br>.2381<br>.2381<br>.2723<br>.3362<br>.3362<br>.3504<br>.3629<br>.3789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | //Recruit<br>#1/10 of<br>correspor<br>ce Maxim<br>correspondi<br>in respondi<br>in Recruit<br>- 1993 L<br>N TOTCTH<br>0 .0000<br>1 .5343<br>6 .8400<br>0 .8585<br>8 .9126<br>2 .9422<br>7 .9593<br>5 .9693<br>5 .9693<br>9 .9750<br>6 .9779<br>8 .9780<br>3 .9791<br>6 .9791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>Im Yield/Rec<br>bding to F20:<br>tresults fo<br>JPDATED AVE<br>tresults fo<br>JPDATED AVE<br>TR                                                                                                                                                       | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>ntial (F2C<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.691<br>                                  | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4<br>VECTORS<br>SPNSTKW<br>13.3484<br>8.9453<br>6.6771<br>5.6104<br>5.3447<br>4.4869<br>3.8954<br>3.4651<br>3.1385<br>2.8819<br>2.6747<br>2.6694<br>2.5035<br>2.4141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.00<br>67.01<br>50.02<br>42.03<br>40.04<br>33.61<br>29.18<br>25.96<br>23.51<br>21.55<br>20.04<br>20.00<br>18.75<br>18.05                                                                                                    |
|         | Slopp<br>F  <br>F  <br>F  <br>S<br>Listir<br>POLLOC<br>F0.1               | e of th<br>level a<br>field/R<br>level t<br>sSB/Rec<br>bg of Y<br>K 4VWX<br>MORT<br>.00<br>.07<br>.14<br>.20<br>.22<br>.36<br>.43<br>.50<br>.58<br>.65<br>.65<br>.72<br>.76<br>.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e Yield<br>t slope<br>ecruit<br>t 20 %<br>ruit co<br>ield pe<br>+ SA 5<br>TOTCTH<br>.0000<br>.1197<br>.2281<br>.2381<br>.2381<br>.2723<br>.3362<br>.3362<br>.3504<br>.3626<br>.3629<br>.3732<br>.3789<br>.3789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | //Recruit<br>=1/10 of<br>correspor-<br>correspondi-<br>correspondi-<br>r Recruit<br>- 1993 L<br>N TOTCTH-<br>0 .0000<br>1 .5343<br>6 .8400<br>0 .8585<br>8 .9126<br>2 .9422<br>7 .9593<br>5 .9693<br>9 .9750<br>6 .9779<br>8 .9780<br>3 .9781<br>6 .9789<br>1 .9789<br>9 .9780<br>1 .9789<br>1 .9789                                                                                                                                                                                                                                         | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>JPDATED AVE<br>ing to F10.<br>JPDATED AVE<br>t Results fo<br>JPDATED AVE<br>t Results f                                                                                                                                                                            | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>ntial (F2C<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.691<br>                                  | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4<br>VECTORS<br>SPNSTKW<br>13.3484<br>8.9453<br>6.6771<br>5.6104<br>5.3447<br>4.4869<br>3.8954<br>3.4651<br>3.1385<br>2.8819<br>2.6747<br>2.6694<br>2.5035<br>2.4141<br>2.3593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100.00<br>67.01<br>50.02<br>42.03<br>40.04<br>33.61<br>29.18<br>25.96<br>23.51<br>21.59<br>20.04<br>20.00<br>18.75<br>18.09<br>17.68                                                                                           |
|         | Slopp<br>F  <br>F  <br>F  <br>S<br>Listir<br>POLLOC<br>F0.1               | e of th<br>level a<br>field/R<br>ievel t<br>ield/R<br>level a<br>SSB/Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e Yield<br>t slope<br>ecruit<br>t 20 %<br>ruit co<br>ield pe<br>+ SA 5<br>.0000<br>.1197<br>.9061<br>.2281<br>.2723<br>.2985<br>.3192<br>.3362<br>.3504<br>.3626<br>.3629<br>.3789<br>.3789<br>.3825<br>.3908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | //Recruit<br>=1/10 of<br>correspor-<br>correspondi-<br>correspondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rrespondi-<br>rres                                                                                                                                                                                                                                                                                                                                                    | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>JP Vield/Rec<br>ding to F20:<br>tresults fo<br>JPDATED AVE<br>tresults fo<br>JPDATED AVE<br>JPDATED AVE<br>TRESULTS fo<br>JPDATED AVE<br>TRESULTS fo<br>JPD                                                                                                                                                       | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>Trital (F2(<br>WTS, FPAT<br>TOTSTKW<br>14.5850<br>10.1763<br>7.9026<br>6.8319<br>6.5649<br>5.7021<br>5.1057<br>4.6707<br>4.3395<br>4.0786<br>3.8671<br>3.8618<br>3.6919<br>3.6001<br>3.5438<br>3.4167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.691<br>                                  | 9<br>> .199<br>1<br>> .763<br>2<br>2<br>.650<br>4<br>VECTORS<br>SPNSTKW<br>13.3484<br>8.9453<br>6.6771<br>5.6104<br>5.3447<br>4.4869<br>3.4854<br>3.4651<br>3.1385<br>2.8819<br>2.6747<br>2.6694<br>2.5035<br>2.4141<br>2.3593<br>2.2361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100.00<br>67.01<br>50.02<br>42.03<br>40.04<br>33.61<br>29.18<br>25.96<br>23.51<br>21.59<br>20.04<br>20.00<br>18.75<br>18.09<br>17.68<br>16.75                                                                                  |
|         | Slopp<br>F  <br>F  <br>F  <br>S<br>Listir<br>POLLOC<br>F0.1               | e of th<br>level a<br>field/R<br>level t<br>field/R<br>sSB/Rec<br>MORT<br>.00<br>.07<br>.14<br>.20<br>.22<br>.36<br>.43<br>.50<br>.58<br>.65<br>.72<br>.76<br>.79<br>.86<br>.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e Yield<br>t slope<br>ecruit<br>t 20 %<br>ruit co<br>ield pe<br>+ SA 5<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | //Recruit<br>=1/10 of<br>correspor-<br>correspondi<br>correspondi<br>r Recruit<br>- 1993 L<br>- 199                                                                                                                                                                                                                                                                                  | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>Jm Yield/Rec<br>adaming Pote<br>ing to F20:<br>t Results fo<br>JPDATED AVE<br>t Results                                                                                                                                                                            | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>Trial (F2C<br>WTS, FPAT<br>TOTSTKW<br>14.5850<br>10.1763<br>7.9026<br>6.8319<br>6.5649<br>5.7021<br>5.1057<br>4.6707<br>4.3395<br>4.0786<br>3.8618<br>3.6919<br>3.6001<br>3.5438<br>3.4167<br>3.3062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.691<br>                                  | 9<br>> .199<br>1<br>> .763<br>2<br>2<br>.650<br>4<br>VECTORS<br>SPNSTKW<br>13.3484<br>8.9453<br>6.6771<br>5.6104<br>5.3447<br>4.4869<br>3.8954<br>3.4651<br>3.1385<br>2.8819<br>2.6747<br>2.6694<br>2.5035<br>2.4141<br>2.3593<br>2.2361<br>2.1293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100.00<br>67.01<br>50.02<br>42.03<br>40.04<br>33.61<br>29.18<br>25.96<br>23.51<br>21.59<br>20.04<br>20.00<br>18.75<br>18.09<br>17.68<br>16.75<br>15.95                                                                         |
|         | Slopp<br>F  <br>F  <br>S<br>Listir<br>POLLOC<br>F0.1                      | e of th<br>level a<br>field/R<br>level t<br>field/R<br>level a<br>sSB/Rec<br>mg of Y<br>% 4VWX<br>.00<br>.07<br>.14<br>.20<br>.22<br>.29<br>.36<br>.43<br>.50<br>.58<br>.65<br>.72<br>.79<br>.86<br>.94<br>1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e Yield<br>t slope<br>ecruit<br>t 20 %<br>ruit co<br>ield pe<br>+ SA 5<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | //Recruit<br>=1/10 of<br>correspor-<br>correspondi<br>correspondi<br>r Recruit<br>- 1993 L<br>- 199                                                                                                                                                                                                                                                                                  | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>Jm Yield/Rec<br>and yield/Rec<br>ing to F20:<br>t Results fo<br>JPDATED AVE<br>t Associated<br>t 4.1642<br>t 4.0355<br>t 4.0355<br>t 4.0355<br>t 4.0355<br>t 3.7810<br>J7 3.7217<br>J3 3.7202<br>11 3.6704<br>t 3.6426<br>J9 3.6425<br>J9 3.5494<br>J3 3.5170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>ritial (F2C<br>ntial (F2C<br>TOTSTKW<br>14.5850<br>10.1763<br>7.9026<br>6.8319<br>6.5649<br>5.7021<br>5.1057<br>4.6707<br>4.3395<br>4.0786<br>3.8618<br>3.6919<br>3.6001<br>3.5438<br>3.4167<br>3.3062<br>3.2090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.691<br>                                  | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4<br>VECTORS<br>SPNSTKW<br>13.3484<br>8.9453<br>6.6771<br>5.6104<br>5.3447<br>4.4869<br>3.8954<br>3.4651<br>3.1385<br>2.8819<br>2.6747<br>2.6694<br>2.5035<br>2.4141<br>2.3593<br>2.2361<br>2.1293<br>2.0357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100.00<br>67.01<br>50.02<br>42.03<br>40.04<br>33.61<br>29.18<br>25.96<br>23.51<br>21.59<br>20.04<br>20.00<br>18.75<br>18.05<br>17.68<br>16.75<br>15.95                                                                         |
|         | Slopp<br>F  <br>F  <br>S<br>Listir<br>POLLOC<br>F<br>F<br>C.1             | e of th<br>level a<br>field/R<br>level t<br>ssB/Rec<br>mg of Y<br>K 4VWX<br>.00<br>.07<br>.14<br>.20<br>.22<br>.29<br>.36<br>.58<br>.65<br>.58<br>.65<br>.72<br>.76<br>.94<br>1.01<br>1.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e Yield<br>t slope<br>ecruit<br>t 20 %<br>ruit co<br>ield pe<br>+ SA 5<br>TOTCTH<br>.0000<br>.1197<br>.1906<br>.2281<br>.2723<br>.3192<br>.3362<br>.3504<br>.3626<br>.3629<br>.3732<br>.3789<br>.3789<br>.3789<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.2811<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.3988<br>.39888<br>.3988<br>.39888<br>.39888<br>.39888<br>.39888<br>.39888<br>.39888<br>.39888<br>.39888<br>.398888<br>.398888<br>.39888<br>.398888<br>.3988888<br>.398888888888 | //Recruit<br>=1/10 of<br>correspor-<br>correspondi<br>correspondi<br>rrespondi<br>r Recruit<br>- 1993 L<br>- 19                                                                                                                                                                                                                                                                                  | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>Jm Yield/Rec<br>ing to F20:<br>tresults fo<br>JPDATED AVE<br>tresults fo<br>JPDATED AVE<br>tresults fo<br>JPDATED AVE<br>tresults fo<br>JPDATED AVE<br>tresults fo<br>JPDATED AVE<br>tresults fo<br>JPDATED AVE<br>for f20:<br>tresults fo<br>JPDATED AVE<br>for f20:<br>for f20:<br>forf | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>riial (F2C<br>NTS, FPAT<br>TOTSTKW<br>14.5850<br>10.1763<br>7.9026<br>6.8319<br>6.5649<br>5.7021<br>5.1057<br>4.6707<br>4.6707<br>4.3395<br>4.0786<br>3.8671<br>3.8618<br>3.6919<br>3.6001<br>3.5438<br>3.4167<br>3.3062<br>3.2090<br>3.1227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.691<br>                                  | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4<br>VECTORS<br>SPNSTKW<br>13.3484<br>8.9453<br>6.6771<br>5.6104<br>5.3447<br>4.4869<br>3.8954<br>3.4651<br>3.1385<br>2.8819<br>2.6747<br>2.6694<br>2.5035<br>2.4141<br>2.3593<br>2.2361<br>2.1293<br>2.0357<br>1.9528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.00<br>67.01<br>50.02<br>42.03<br>40.04<br>33.61<br>29.18<br>29.18<br>23.51<br>21.59<br>20.04<br>20.00<br>18.75<br>18.09<br>17.68<br>16.75<br>15.25<br>15.25<br>14.63                                                       |
|         | Slopp<br>F  <br>F  <br>F  <br>F  <br>F  <br>F  <br>F  <br>F  <br>F  <br>F | e of th<br>level a<br>field/R<br>level t<br>ievel sSB/Rec<br>ievel a<br>SSB/Rec<br>ievel a<br>SSB/Rec<br>ievel a<br>SSB/Rec<br>ievel a<br>sSB/Rec<br>ievel a<br>sSB/Rec<br>ievel a<br>ievel a<br>i<br>ievel a<br>ievel | e Yield<br>t slope<br>ecruit<br>o produ<br>ecruit<br>t 20 %<br>ruit co<br>ield pe<br>+ SA 5<br>TOTCTH<br>- SA 5<br>.0000<br>.1197<br>.1906<br>.2281<br>.2381<br>.2723<br>.3504<br>.2283<br>.3192<br>.33626<br>.3629<br>.3789<br>.3626<br>.3629<br>.3789<br>.3825<br>.3908<br>.3982<br>.4050<br>.4111<br>.4168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | //Recruit<br>=1/10 of<br>correspor-<br>correspondi<br>correspondi<br>rrespondi<br>rrespondi<br>r Recruit<br>- 1993 L<br>N TOTCTH<br>- 1993 L<br>- 1                                                                                                                                                                                                                                                                                  | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>Jm Yield/Rec<br>ing to f20:<br>tr Results fo<br>JPDATED AVE<br>tr Results fo<br>JPDATED AVE<br>fr Associated<br>fr A                                                                                                                                                                                                                         | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>ritial (F2C<br>TOTSTKW<br>14.5850<br>10.1763<br>7.9026<br>6.8319<br>6.5649<br>5.7021<br>5.1057<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>3.6618<br>3.6611<br>3.662<br>3.2090<br>3.1227<br>3.0454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.691<br>                                  | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4<br>VECTORS<br>SPNSTKW<br>13.3484<br>8.9453<br>6.6771<br>5.6104<br>5.3447<br>4.4869<br>3.8954<br>3.4651<br>3.1385<br>2.8819<br>2.6747<br>2.6694<br>2.5035<br>2.4141<br>2.3593<br>2.2361<br>2.1293<br>2.0357<br>1.9528<br>1.8789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.00<br>67.01<br>50.02<br>42.03<br>40.04<br>33.61<br>29.18<br>23.51<br>21.59<br>20.04<br>20.00<br>18.75<br>18.09<br>17.68<br>16.75<br>15.95<br>15.25<br>14.63<br>14.08                                                       |
|         | Slopp<br>F  <br>F  <br>F  <br>F  <br>F  <br>F  <br>F  <br>F  <br>F  <br>F | e of th<br>level a<br>field/R<br>level t<br>level sSB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>is                                                                                    | e Yield<br>t slope<br>ecruit<br>o produ<br>ecruit<br>t 20 %<br>ruit co<br>ield pe<br>+ SA 5<br>TOTCTH<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | //Recruit<br>#1/10 of<br>correspor-<br>correspondi<br>correspondi<br>r Recruit<br>- 1993 L<br>N TOTCTH<br>- 1993 L<br>N TOTCTH<br>- 1993 L<br>- 199                                                                                                                                                                                                                                                                                  | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>Jm Yield/Rec<br>abening Pote<br>ing to f20:<br>t Results fo<br>JPDATED AVE<br>t Results                                                                                                                                                                            | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>ntial (F2C<br>)<br>TOTSTKW<br>14.5850<br>10.1763<br>7.9026<br>6.8319<br>6.5649<br>5.7021<br>5.1057<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707      | 11.691<br>                                  | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4<br>VECTORS<br>SPNSTKW<br>13.3484<br>8.9453<br>6.6771<br>5.6104<br>5.3447<br>4.4869<br>3.8954<br>3.4651<br>3.1385<br>2.8819<br>2.6747<br>2.6694<br>2.5035<br>2.4141<br>2.3593<br>2.2361<br>2.1293<br>2.0357<br>1.9528<br>1.8789<br>1.8124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.00<br>67.01<br>50.02<br>42.03<br>40.04<br>33.61<br>29.18<br>25.96<br>23.51<br>21.59<br>20.04<br>20.00<br>18.75<br>18.09<br>17.68<br>16.75<br>15.95<br>14.63<br>14.08<br>13.58                                              |
|         | Slopp<br>F                                                                | e of th<br>level a<br>field/R<br>level t<br>ievel t<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/Rec<br>isSB/RCC<br>isSB/RCC<br>isSB/RCC<br>isSB/RCC<br>isSB/RCC<br>isSB/RCC<br>isSB/RCC<br>isSB/RCC                                                                                    | e Yield<br>t slope<br>ecruit<br>o produ<br>ecruit<br>t 20 %<br>ruit co<br>ield pe<br>+ SA 5<br>TOTCTH<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | //Recruit<br>=1/10 of<br>correspor-<br>correspondi-<br>correspondi-<br>r Recruit<br>- 1993 L<br>N TOTCTH-<br>0 .0000<br>1 .5343<br>6 .8400<br>0 .8585<br>8 .9126<br>2 .9422<br>7 .9593<br>5 .9693<br>5 .9693<br>9 .9750<br>6 .9779<br>8 .9780<br>6 .9780<br>3 .9791<br>6 .9791<br>4 .9789<br>2 .9666<br>6 .9638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>Jm Yield/Rec<br>aberning Pote<br>ing to f20:<br>t Results fo<br>JPDATED AVE<br>t Result                                                                                                                                                                            | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>ntial (F2C<br>14.5850<br>10.1763<br>7.9026<br>6.8319<br>6.5649<br>5.7021<br>5.1057<br>4.6707<br>4.6707<br>4.3395<br>4.0786<br>3.8618<br>3.6919<br>3.6001<br>3.5438<br>3.4167<br>3.3062<br>3.2090<br>3.1227<br>3.0654<br>2.9756<br>2.9123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.691<br>                                  | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4<br>VECTORS<br>SPNSTKW<br>13.3484<br>8.9453<br>6.6771<br>5.6104<br>5.3447<br>4.4869<br>3.8954<br>3.4651<br>3.1385<br>2.8819<br>2.6747<br>2.6694<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.5035<br>2.4141<br>2.558<br>1.8789<br>1.8124<br>1.7522 | 100.00<br>67.01<br>50.02<br>42.03<br>40.04<br>33.61<br>29.18<br>25.96<br>23.51<br>21.59<br>20.04<br>23.51<br>21.59<br>20.04<br>18.75<br>18.09<br>17.68<br>16.75<br>15.25<br>15.25<br>15.25<br>14.63<br>14.68<br>13.58<br>13.13 |
|         | Slopp<br>F                                                                | e of th<br>level a<br>field/R<br>level t<br>level sSB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>issB/Rec<br>is                                                                                    | e Yield<br>t slope<br>ecruit<br>o produ<br>ecruit<br>t 20 %<br>ruit co<br>ield pe<br>+ SA 5<br>TOTCTH<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | //Recruit<br>=1/10 of<br>corresport<br>correspondi<br>correspondi<br>r Recruit<br>- 1993 L<br>- 199                                                                                                                                                                                                                                                                                  | JPDATED AVE<br>Curve at F=<br>the above s<br>nding to F0.<br>Im Yield/Rec<br>ing to F20:<br>t Results fo<br>JPDATED AVE<br>t Results fo<br>JPDATED A                                                                                                                                                                            | WTS, FPAT<br>0.00:><br>lope (F0.1<br>1:><br>ruit (Fma)<br>x:><br>ntial (F2C<br>TOTSTKW<br>14.5850<br>10.1763<br>7.9026<br>6.8319<br>6.5649<br>5.7021<br>5.1057<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707<br>4.6707 | 11.691<br>                                  | 9<br>> .199<br>1<br>> .763<br>2<br>> .650<br>4<br>VECTORS<br>SPNSTKW<br>13.3484<br>8.9453<br>6.6771<br>5.6104<br>5.3447<br>4.4869<br>3.8954<br>3.4651<br>3.1385<br>2.8819<br>2.6747<br>2.6694<br>2.5035<br>2.4141<br>2.3593<br>2.2361<br>2.1293<br>2.0357<br>1.9528<br>1.8789<br>1.8124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X MSP<br>100.00<br>67.01<br>50.02<br>42.03<br>40.04<br>33.61<br>29.18<br>25.96<br>23.51<br>21.59<br>20.04<br>20.00<br>18.75<br>15.25<br>14.63<br>14.08<br>13.58<br>14.08<br>13.13<br>12.72<br>12.34                            |

.

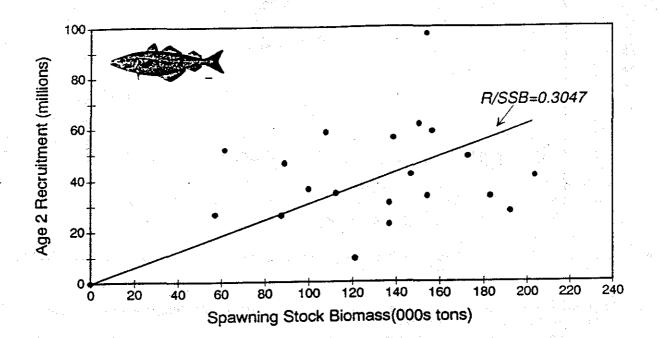



Figure A8. Spawning stock biomass-recruitment scatterplot and replacement line for Divisions 4VWX and Subareas 5 and 6 pollock.

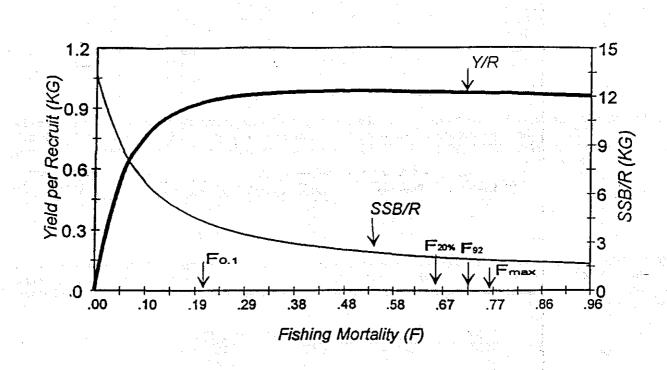



Figure A9. Yield and spawning stock biomass per recruit (SSB/R) results for Divisions 4VWX and Subareas 5 and 6 pollock.

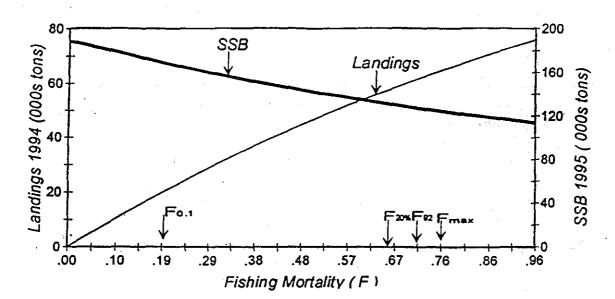



Figure A10. Short-term projections of 1994 landings and 1995 spawning stock biomass (SSB) results for Divisions 4VWX and Subareas 5 and 6 pollock.

| Table A11. | Projections of landings and spawning stock biomass (SSB) assuming A) fishing mortality of 0.72 and |
|------------|----------------------------------------------------------------------------------------------------|
|            | B) total landings of 43,000 mt in 1993                                                             |

| Age-Specific Input Data |                       |                    |                    |                      |                  |                  |  |  |
|-------------------------|-----------------------|--------------------|--------------------|----------------------|------------------|------------------|--|--|
| Age                     | Stock Size<br>in 1993 | Fishing<br>Pattern | Natural<br>Pattern | Proportion<br>Mature | Average<br>Catch | Weights<br>Stock |  |  |
|                         | III 1995              | Pattern            | Fattern            | Mature               | Catch            | SLOCK            |  |  |
| 2                       | 34675                 | 0.0029             | 1.0000             | 0.0750               | 0.527            | 0.485            |  |  |
| 3                       | 28040                 | 0.0565             | 1.0000             | 0.3450               | 1.110            | 0.969            |  |  |
| 4                       | 18612                 | 0.3048             | 1.0000             | 0.7190               | 1.750            | 1.474            |  |  |
| 5                       | 27762                 | 0.6160             | 1.0000             | 0.9070               | 2.488            | 2.141            |  |  |
| 6                       | 13893                 | 0.8974             | 1.0000             | 0.9680               | 3.162            | 2.882            |  |  |
| 7                       | 3183                  | 1.0000             | 1.0000             | 1.0000               | 3.815            | 3.585            |  |  |
| 8                       | 1402                  | 1.0000             | 1.0000             | 1.0000               | 4.255            | 4.105            |  |  |
| 9                       | 382                   | 1.0000             | 1.0000             | 1.0000               | 4.985            | 4.700            |  |  |
| 10                      | 224                   | 1.0000             | 1.0000             | 1.0000               | 5.380            | 5.251            |  |  |
| 11                      | 172                   | 1.0000             | 1.0000             | 1.0000               | 6.345            | 5.961            |  |  |
| 12+                     | 157                   | 1.0000             | 1.0000             | 1.0000               | 7.998            | 8.159            |  |  |

A) The following forecasts for 1994 were performed assuming that fishing mortality in 1993 was the same as in 1992 (*Le.* F=.72). This fishing mortality rate implies that commercial landings in 1993 will be about 60,000 mt. Average recruitment of age 2 fish (38.2 million) was assumed for the 1992 and 1993 year classes in 1994 and 1995, respectively.

|                   | F(94) | SSB (94 | Landings (94) | SSB (95) |
|-------------------|-------|---------|---------------|----------|
| F.,               | 0.65  | 130.3   | 49.8          | 122.3    |
| F 20%             | 0.47  | 130.3   | 38.3          | 133.6    |
| F <sub>(92)</sub> | 0.72  | 130.8   | 53.9          | 118.3    |

B) The following forecasts for 1994 were performed assuming that total landings in 1993 remain the same in as in 1992 (*i.e.* 43,000 mt). This implies that the fishing mortality rate in 1993 will be about 0.48. Average recruitment of age 2 fish (38.2 million) was assumed for the 1992 and 1993 year classes in 1994 and 1995, respectively.

|                                                                                                                 | F(94) | SSB (94)        | Landings (94)              | SSB (95)              |
|-----------------------------------------------------------------------------------------------------------------|-------|-----------------|----------------------------|-----------------------|
| F                                                                                                               | 0.65  | 147.0           | 57.3                       | 131.9                 |
| Fmed                                                                                                            | 0.47  | 147.0           | 44.1                       | 144.8                 |
| F <sub>(Landings 92)</sub>                                                                                      | 0.48  | 147.0           | 44.8                       | 144.2                 |
| n and a state of the | 1.1.1 | All a get and a | performance and the second | a an in chief a si sa |

Page 30

1

| Year  |    |     |   |    | · . | Month       |             |     |     |     |     | otal Trips<br>Per Year |      |
|-------|----|-----|---|----|-----|-------------|-------------|-----|-----|-----|-----|------------------------|------|
|       | 1  | 2   | 3 | 4  | 5   | 6           | 7           | 8   | 9   | 10  | 11  | 12                     |      |
| 89    |    |     |   |    |     | :. <b>1</b> | · 1         | 11  | 25  | 19  | 14  | 14                     | 85   |
| 90    | 5  | . 2 | 3 | 10 | - 9 | - 5         | 7           | 7   | 8   | 10  | 11  | 6                      | 83   |
| 91    | 4  | 0   | 1 | 7  | 11  | 102         | 99          | 118 | 92  | 86  | 82  | 43                     | 645  |
| 92    | 16 | 5   | 5 | 17 | 35  | 77          | 94          | 90  | 78  | 47  | 108 | 58                     | 630  |
| Total | 25 | 7   | 9 | 34 | 55  | 185         | <b>2</b> 01 | 226 | 203 | 162 | 215 | 121                    | 1443 |

Table A12. Number of pollock sink gillnet sea sampling trips by year and month, 1989-1992

Table A13. Summary of primary species sought by sink gillnet sea sample trips in which pollock were caught.1989-1992

| Primary Species           |            | Total Trips |      |      |           |     |
|---------------------------|------------|-------------|------|------|-----------|-----|
|                           | 1989       | 1990        | 1991 | 1992 |           | 5   |
| Unknown                   | 0          | 0           | 0    | . 1  | 1         |     |
| Cod                       | 43         | 47          | 468  | 423  | 981       |     |
| Pollock                   | 25         | 12          | 74   | 87   | 198       |     |
| American plaice           | 0          | 0           | 0    | 1    | 1         |     |
| Witch flounder            | 0          | 0           | 3    | . 1  | 4         |     |
| Yellowtail flounder       | 0          | 1           | 0    | 6    | 7         |     |
| Winter flounder           | 2          | 3           | 0    | 1    | 6         |     |
| Flatfish, not specified   | 0          | 1           | 4    | 2    | 7         |     |
| White hake                | · 0        | 1           | 12   | 2    | 15        |     |
| Groundfish, not specified | 15         | 15          | 66   | 90   | 186       |     |
| Mackerel                  | 0          | . 0         | 0    | 4    | · 4       |     |
| Dogfish                   | • <b>O</b> | 2           | 15   | 11   | <b>28</b> | • • |
| Fish, not specified       | 0          | 1           | 3    | 1    | 5         |     |
| Total trips/year          | 85         | 83          | 645  | 630  | 1443      |     |

million) was considerably lower than the VPAbased estimate (57.8 million). The NEFSC spring and autumn and Massachusetts spring surveys all predicted that this year class was slightly below average strength; the RCT3 estimate was, therefore, accepted over that derived from the VPA. Numbers at age 3 in 1993 were adjusted by Z to reflect the revised strength of this year class at age 2 in 1992. Recruitment of the 1992 and 1993 year classes (38.2 million) was computed as the geometric mean of the 1972-1989 year classes.

### Catch and Stock Size Projections

The SARC reviewed 1993 status quo F and landings projections, presented in Table Alla and Allb, respectively. The SARC believes that the F in 1993 is not likely to be as high as the F in 1992. The status quo landings projections are therefore considered to be the more likely outcome for 1994.

If fishing mortality in 1993 remains at the 1992 level ( $F_{sq}=0.72$ ), catches are projected to increase to approximately 60,000 mt. Because of catch restrictions imposed by Canada to meet  $F_{0,1}$ management objectives, it is unlikely that the 1993 Canadian catch will exceed the 35,000 mt multi-year annual total allowable catch (TAC), and total catch is not likely to exceed 43,000 mt in 1993, assuming status quo catch for U.S. and distant-water fleet (DWF) components. Under this scenario, F will decline to 0.48 in 1993 and SSB will increase to 147,000 mt in 1994 (Table A11b). Continued fishing at the 1993 F level (0.48) in 19984 will result in a stabilization of SSB at about the 1974-1992 mean in 1995. If F approximates the  $F_{20\%}$  level (0.65), in 1994, SSB in 1995 (131,900 mt) will again decline below the

1974-1992 mean. Reducing F to  $F_{med}$  (0.47) in 1994, will stabilize SSB at the long-term mean in 1995.

The increase of projected catch in 1993 under the status quo F scenario is due primarily to growth in weight of the 1988 year class, which was estimated by the VPA to have been the strongest to appear since the 1979 year class. Thus, it is likely that F in 1993 will be considerably lower than 0.72. This suggests that the elevated levels of F estimated for 1992 and 1991 are the result of several years of below-average recruitment from the 1983, 1984, and 1986 year classes. This pattern appears to have been reversed in recent years as the 1987 and 1988 vear classes are estimated to be well above average. However, the increase in stock biomass expected from growth of fish from the 1988 year class may be short-lived, as the 1989, 1990, and 1991 year classes are expected to be below average in strength.

# ANALYSES OF SINK GILLNET FISHERY EFFORT MEASURES AND POLLOCK LENGTH COMPOSITION SAMPLES

### Gillnet Effort Measures

Beginning in 1989, the NEFSC initiated a comprehensive domestic sea sampling program to collect catch, discard, and effort information as well as length and age composition of the catch. The NEFSC sea sampling data collected on board gillnet vessels was evaluated using information from all hauls where pollock were caught. Using analysis of variance (ANOVA) procedures in the form of a general linear model (GLM) several variables affecting overall fishing effort, and spatial and seasonal factors affecting CPUE were examined.

Total catch, pollock catch, effective effort measures (soak time, number of panels, and length and height of nets) and descriptors (area, month, vessel and crew size, and captain's experience) were extracted from the various sea sampling data sets and matched for each haul where pollock were caught. The characteristics of each variable (maximum, minimum, mean, variance, n) within month-statistical area cells were first examined to determine the extent of the overall variability of the observations.

To evaluate the impact of the various effort measures on catch of pollock, several ANOVAs were performed using the GLM approach. With the dependent variable log pollock catch, main classification variables were defined as year, month, area, and depth code and covariates as soak time, number of nets, net length and height, and captain's experience. Once the significant effort measures were determined, effective effort was computed as the product of these measures, and the pollock catch was divided by the effective fishing effort to compute CPUE.

The number of sampled trips in which some pollock were taken ranged from 83 to 85 in 1989 and 1990 to 630 to 645 in 1991 and 1992 when sea sample coverage increased tenfold (Table A12). In all years, most trips taking pollock occurred during the latter half of the year. On sampled trips taking pollock, the most frequent species sought was cod, followed by pollock. A significant number of trips were also recorded as seeking mixed groundfish (Table A13). The number of haul observations varied annually from a low of 267 in 1989 to a high of 2,462 in 1991. This variation also reflected changes in the sampling intensity from year to year. In all years, statistical area 513 had the highest number of observations.

The initial GLM explained about 38% of the total variability in the pollock catch. Year, area, and month were highly significant main classification effects and soak time, number of nets, and net length and height were highly significant covariates (Table A14). Depth code and the experience of the captain were not significant. When these effort measures were incorporated into the dependent variable as pollock CPUE, highest pollock CPUE relative to standard area 513 occurred in areas 511 and 512 along the Maine coast and in areas 521 in the Great South Channel and 561 on the Northern edge of Georges Bank. Highest seasonal catch rates relative to standard month November occurred during June and July. Lowest CPUE was evident in February and March at the end of the spawning season.

When two-way interaction terms for the main classification variables were introduced, the model explained approximately 45% of the total variability in log CPUE. All two-way interactions were highly significant as were the remaining classification variables. The type IV sum of squares suggested an imbalanced design with several missing cells.

Two additional analyses were performed after grouping areas as: 511+512, 513+514, and 521+522. In addition, areas on eastern Georges Bank (561), Scotian Shelf (464), and South of New England (537 and 538) were eliminated because of sporadic coverage. To eliminate the imbalance caused by the incomplete coverage in 1989, only

|                                          | i i     |      |                | General Lin    | ear Models Procedure                     |         | al de Status     |                                   |
|------------------------------------------|---------|------|----------------|----------------|------------------------------------------|---------|------------------|-----------------------------------|
| Dependent V                              | ariable | : LH |                |                |                                          |         |                  |                                   |
| Source                                   |         | DF   |                | Sum of Squares | Mean Square                              | F Value | <b>Pr &gt; F</b> | · · ·                             |
| Model                                    | · · ·   | 32   | na<br>La const | 306.62017995   | 9.58188062                               | 14.70   | 0.0001           |                                   |
| Error                                    |         | 781  |                | 508.93837345   | 0.65164965                               |         |                  | · • •                             |
| Corrected Tota                           | al      | 813  | a an           | 815.55855340   | n an |         |                  | · .                               |
| an a | R-Squ   | are  | . tert         | CV             | Root MSE                                 | 1       | LHAIL Mean       |                                   |
|                                          | 0.375   | 963  | · · · · · ·    | 14.07695       | 0.80724819                               |         | 5.73454097       | antan<br>Antanàna amin'ny fisiana |
| Source                                   | •       | DF   | · · ·          | Type III SS    | Mean Square                              | F Value | Pr > F           |                                   |
| YEAR                                     | · ·     | 3    |                | 51.92265080    | 17.30755027                              | 26.56   | 0.0001           |                                   |
| AREA                                     |         | 8    |                | 28.24541386    | 3.53067673                               | 5.42    | 0.0001           |                                   |
| MONTH                                    |         | 11   |                | 50.46782127    | 4.58798375                               | 7.04    | 0.0001           |                                   |
| TDEPTHCD                                 |         | 5    |                | 4.92744331     | 0.98548866                               | 1.51    | 0.1835           |                                   |
| CAPTYRS                                  |         | 1    |                | 0.00640241     | 0.00640241                               | 0.01    | 0.9211           |                                   |
| ACTOWDUR                                 |         | 1    |                | 24.07296469    | 24.07296469                              | 36.94   | 0.0001           |                                   |
| NNETHAUL                                 |         | 1    |                | 56.05612144    | 56.05612144                              | 86.02   | 0.0001           | and a star                        |
| NETLEN                                   |         | 1    |                | 3.16308162     | 3.16308162                               | 4.85    | 0.0279           |                                   |
| NETHGT                                   |         | 1    | 2 <sup>N</sup> | 4.85039190     | 4.85039190                               | 7.44    | 0.0065           |                                   |

Table A14. Analysis of variance of pollock catches us effective effort measures and main classification variables

Table A15. Analysis of variance of pollock logged LPUE us year, division, and month

| Dependent V<br>Source | ariable: LLPUE<br>DF | Sum of Squares | Mean Square           | F Value Pr > F |
|-----------------------|----------------------|----------------|-----------------------|----------------|
| Model                 | 11                   | 103.42019189   | 9.40183563            | 12.91 0.0001   |
| Error                 | 591                  | 430.25174782   | 0.72800634            |                |
| Corrected Tota        | al 602               | 533.67193970   | and the second second |                |
|                       | R-Square             | CV             | Root MSE              | LLPUE Mean     |
|                       | 0.100700             | -10.21123      | 0.85323288            | -8.35582917    |
| 4.                    | 0.193790             | -10.21123      | 0.00020200            | -0.00002917    |
| Source                | 0.193790<br>DF       | Type III SS    | Mean Square           | F Value Pr > F |
| Source<br>YEAR        | · · · · · ·          |                |                       |                |
| ·····                 | DF                   | Type III SS    | Mean Square           | F Value Pr > F |

months from July through December were analyzed. The main effects model indicated highly significant year, month, and division effects but the inclusion of two-way interaction terms suggested that much of the variability is taken up by interactions, rendering the main effects nonsignificant (Table A15).

### Length Composition Comparisons

The suitability of length frequency measurements obtained on board gill net vessels was evaluated as a means of augmenting the limited number of samples collected in ports of landing. Since all length frequency records obtained from the sea sample program are coded as unclassified, the estimated length composition of gill netcaught pollock as determined from port sampling for the unclassified market category was compared with an estimated length composition based on the sea samples alone.

In 1989, most sea sample length measurements were well above the general range of the unclassified category. In 1990 and 1991, the sea sample length modes appeared to better coincide

106003990 - Paneto

with the port samples, but this may simply be an effect of declining availability of larger pollock in the latter two years. In all cases, the sea samples tended to overestimate the mean weight of pollock (and underestimate the numbers landed) in the unclassified market category as follows:

| 1989: | 5.9 <i>vs.</i> 2.5 kg; |
|-------|------------------------|
| 1990: | 3.9 vs. 2.4 kg;        |
| 1991: | 3.7 vs. 3.1 kg.        |

This has resulted in rather large differences in the contribution to the estimated total age composition of pollock from this market category both in terms of number and proportion at age.

### DISCUSSION

### Assessment

The Scotian Shelf-Gulf of Maine-Georges Bank pollock stock has undergone a recent decline in spawning stock biomass resulting from belowaverage recruitment during the mid-1980s. Age 6+ mean biomass has declined by 60% since 1986 while total landings have declined by 40%. Fishing mortality (mean 7-11,u), which had fluctuated between 0.55 and 0.67 during the latter half of the 1980s, increased to more than 0.8 in 1991 and is estimated to have been 0.72 in 1992. Fishing mortality is likely to decline in 1993 and 1994 if the 1988 year class is as strong as had been estimated by the VPA and Canada continues to impose catch restrictions.

Estimates of the strength of subsequent year classes from 1989, 1990, and 1991 indicate another period of below average recruitment. However, these estimates, particularly those for the 1990 and 1991 year classes, are the least certain because little or no fishery data are yet included in the estimation process.

The decline in U.S. landings from this stock has been more severe than the decline in Canadian landings. The 1992 U.S. catch of 7,182 mt is less than 30% of the peak catch of 24,542 mt taken in 1986. In contrast, Canada has been able to take between 73% and 84% of its peak 1985 catch over the past three years.

These differences in landings between the U.S. and Canada from what is considered a unit stock may be explained by two very different hypotheses regarding stock definition. Under one scenario, the sharp decline in U.S. landings reflects a sharp decline in available biomass resulting from extremely high exploitation during 1985-1987 when annual U.S. landings equalled or exceeded 20,000 mt. This suggests a low degree of mixing of pollock between the Scotian Shelf and U.S.- managed waters. A second scenario would explain the decline in U.S. landings (and the relative stability of 4X Canadian landings) as a result of emigration of pollock from the Gulf of Maine to Canadian waters.

If the first hypothesis holds, the inclusion of U.S. 5Y+5Zu catch-at-age data with Canadian and DWF catch-at-age from Divisions 4VWX+5Zc may introduce more variability in estimated stock sizes if recruitment is not synchronous between the two areas. If the second hypothesis is true, the inclusion of the U.S. component to the Canadian+DWF catch-at-age data should provide a more complete evaluation and yield higher estimates of F than the Canadian assessment alone would indicate.

## **Gillnet Effort Measures**

The effort measures incorporated into the ANOVAs calibrated gillnet fishing effort to the amount of net area fished (number of nets x length of net x height of net) times the actual fishing time (soaking time). This effective fishing effort, therefore, should account for most of the variation in fishing practices among hauls and operators. Inclusion of further refinements such as individual hanging practices in the model may account for additional variation in pollock catches, but these were considered variations that could not be quantified from the available data.

The number of years of experience of the captain and the depth zone fished proved not to be significant factors in explaining either the quantity of pollock caught or the CPUE. When the pollock catch on each haul was divided by the effective effort, variability in CPUE was explained by the year, month, and area main effects. However, the interaction model indicated potential problems due to missing cells. When the data were grouped in an attempt to minimize the number of missing cells, the main effects were only significant when interaction terms were removed from the model. Further analyses must be performed to evaluate the extent of the imbalance in the model.

Sea samples used in conjunction with port samples will have a disproportionate impact on the overall length composition because many fish are measured in the sea sampling program in some months and areas, but other times as few as five fish are measured in an entire month from a given area. If sea samples are to be considered as a means of augmenting port sampling, sample size constraints should be imposed on a timearea basis as is required in port sampling.

## SUBCOMMITTEE COMMENTS [Reviewed and endorsed by SARC]

# Assessment of the Status of the 4VWX+5+6 Pollock Stock

In the table of mean weights at age, the subcommittee noted a decline in the mean weight at age of older fish in the Canadian landings. The question of potential changes in aging protocol was raised but could not be resolved since these data were obtained directly from Canadian assessment documents. Previous discussions with Canadian scientists, however, suggest that aging procedures have been consistent throughout the time series. It was noted that an additional source of variation in mean weight at age from Canadian samples is that the Canadian lengthweight equation is derived annually from resource surveys, whereas the U.S. assessment uses a single length-weight equation for the entire time period.

Commercial CPUE indices from the U.S. otter trawl fishery have shown a general decrease since 1977, with the most rapid decline since about 1986. During the last two years, however, CPUE indices have increased. The subcommittee noted that the presence of pair trawl data may be artificially inflating the index. The Canadian IOP CPUE index shows a similar decline since the mid-1980s. The Canadian regional index also suggests a decline, but considerable interannual variability is evident in the series. Because of quotas placed on the fishery and trip limits on individual vessels in the regional fishery index, this index may not be an accurate indicator of stock abundance. Hence, the subcommittee recommended not using the recent portion of the regional CPUE index for tuning. The subcommittee agreed, however, that the IOP index could be appended to the regional index since the two series are based on similar vessels (ton class 5) and the IOP data have been analyzed to remove the impact of fishery regulations.

In the NEFSC survey series, several index values appear aberrant compared with adjacent years, particularly the spring survey index dur-

ing 1987. In some of these cases, the very high index value was due primarily to very large individual catches. To minimize the effect of individual high catches, analyses were presented using a log transformation on survey catches. Indices based on log transformed data smoothed the data considerably, removing the large "spikes" in abundance in the linear index. A graphic comparison of linear and corresponding log retransformed abundance and biomass proved useful in identifying potential outliers in the linear index. Although these log-transformed indices were not used in VPA calibration, the subcommittee suggested that these indices may provide a better indication of abundance thus increasing their utility as a tuning index.

Results of a separable VPA indicate that full recruitment occurs at age 7. After age 7, there was an indication of a slight dome in the partial recruitment. Thus, the subcommittee requested additional analyses during the meeting to resolve the shape of the partial recruitment vector. Results of these additional analyses indicated that a flat-topped partial recruitment curve adequately represented the selection pattern.

Initial ADAPT runs generally showed acceptable results, except for strong residuals noted in the spring survey series in 1988. Since the linear survey index, which was used in the tuning, conflicted greatly with the index derived from analysis of log-transformed data for 1987, the subcommittee recommended that the index for 1987 be set to missing. The committee further noted a very large residual for the U.S. fall survey at age 2 in 1993.

Final ADAPT runs were made deleting 1987 spring U.S. survey indices for ages 3 and 4 and incorporating aggregated U.S. and Canadian commercial CPUE indices tuned to midyear biomass. Results of these runs showed acceptable residual patterns, but showed relatively high loading of sums of squares on Canadian summer survey indices for ages 2 to 4, and on the Massachusetts age 1 survey index. The subcommittee judged that these results were acceptable, but notes that these indices may have a relatively large effect on the estimate of incoming recruitment. Also, the subcommittee noted that the inclusion of ageaggregated biomass indices from the commercial fishery as well as the age-disaggregated indices effectively may result in a disproportionate weight for the information incorporated from the commercial fishery.

Discussions during the meeting also noted problems in the incorporation of tuning indices for ages younger than ages for which population

estimates are being obtained as model parameters. Yield per recruit and spawning stock biomass per recruit analyses were run with partial recruitment vectors reflecting two different periods of time: 1982-1991 and 1988-1991. The subcommittee felt that the partial recruitment vector representing 1988-1991 was most appropriate because of management actions (*i.e.*, minimum size regulation), but notes that  $F_{max}$  is sensitive to the partial recruitment vector used.

# Analysis of the Sea Sampling Data on the Sink Gillnet Fishery

In the descriptive statistics section of this paper, the subcommittee noted that the sample sizes were presented in terms of hauls (of strings of gillnets) rather than trips. Since hauls within a trip are likely to be similar, they do not represent independent samples. Because of this, the subcommittee suggested that the number of trips within each sampling cell would be useful to indicate the number of independent samples. Analyses performed during the meeting were useful in demonstrating that during 1989 and 1990, relatively few trips were sampled, resulting in small sample sizes for some area-month combinations.

Initial GLM analyses of pollock catch focused on determining if net characteristics (*i.e.*, number of nets in a string, net length, net height, and soak time) could be used to standardize fishing effort. Additional factors, including year, area, month, depth, and captain's experience were also included in the GLM model. Results of this model indicated that the net characteristics chosen had a significant effect on the logarithm of catch and are appropriate for standardizing effective effort. In these analyses, the subcommittee noted that while log-transformed data are typically used in such analyses, the residuals should be tested for normality to ensure that this assumption of the GLM is met.

Further analyses were presented on log (CPUE) where CPUE was computed as catch/ (net length \* number of nets \* net height \* soak time). These analyses examined the effect of captain's experience, depth, year, month, area as well as interactions between year and month, year and area, and month and area. In the GLM analyses with interaction terms included, the subcommittee observed that the type IV sums of squares differed from the type III sums of squares, indicating that not all model cells were filled. Results suggested, however, that the interaction terms were significant, and potentially important in determining annual trend in CPUE. As such, the committee recommended that additional analysis be performed dropping times and areas where pollock catches occur sporadically, and combining areas where catch rates are similar. Specifically, the subcommittee recommended that:

- 1. January through May be dropped from the analysis. This was recommended for two reasons. First, catch rates are generally low during this time of year, and occur sporadically across areas. Secondly, sea sampling during 1989 did not begin until June. Thus, no data are available from January to May for that year.
- 2. Combine areas 511 and 512; areas 513 and 514; areas 521 and 522, and retain area 515 as a single unit. Delete all other areas since catches occurred sporadically throughout the sampling period.

Results of these analyses suggested that the interaction terms were significant, but missing cells still occurred. Further, in these analyses, the main effects of year, area, and month did not appear significant. Because of the confounding of main effects with significant interaction terms, the problem of missing cells, and the short time series of data available, the subcommittee concluded that it was premature to use the results of these GLM analyses as tuning indices. The subcommittee agreed, however, that measures of effort present in the sea sampling data base (i.e., number of nets in a string, net length, net height, and soak time) are sufficient to standardize effort. It is anticipated that if sea sampling of the gill net fishery is maintained at similar intensity as in 1991 and 1992, this database will provide a useful CPUE index as an index of abundance.

In addition to providing analyses of catch rates, the length composition of pollock measured in the sea sampling database was compared to the length composition of unclassified landings measured by the port sampling program. Strong differences in the length composition were observed, but the subcommittee noted that the unclassified landings in the port may not be the most appropriate basis for comparison since large pollock may be culled from this market category.

# SARC DISCUSSION AND RESEARCH RECOMMENDATIONS

This assessment updated the previous assessment conducted during SAW-9 that incorporated both U.S. and Canadian landings and survey indices. At SAW-9, it was recommended that assessments be done on the entire stock. The distribution pattern of pollock is such that only about one-sixth of the total catch was taken by U.S. harvesters in 1992.

The lack of discards and recreational catch estimates results in an underestimate of removals from the fishery, however, estimates of Canadian discarded catch would be necessary since the majority of the fishery is prosecuted in Canadian waters. The representativeness of recreational catch data is problematic due to insufficient sampling of offshore party boats and the lack of sampling during fall and winter. Current sampling does not characterize the population since the majority of length frequencies are comprised of harbor pollock. Comparison of recent recreational catches with higher catches prior to 1979 is difficult because of differences in methodology and unknown variance of the expanded estimates. These catch estimates should include confidence intervals to evaluate trends.

A recent decline in weight at age of large fish is due to a trend in the Canadian weight at age estimates. The trend in mean weights could be due to the use of annual length-weight equations, a change in migration patterns, or to an areal shift in the fishing pattern of the Canadian fleet, since pollock exhibit different growth rates by area.

The apparent opposite trends in the U.S. and Canadian survey indices indicate that individual surveys are not representative of the entire stock. Again, this may be due to the temporal availability of stock components, or to differential removal of large fish by the respective fleets, or an actual shift in the migratory patterns of pollock during the last decade. Tagging of fish in U.S. waters would address this problem.

Bootstrap estimates of fully recruited F and beginning year SSB were consistently positively biased. The SARC chose to not adjust for the bias because the source of bias was undetermined. There is potential bias in the SSB estimates if the maturation schedule has shifted over time. If the  $L_{50}$  value is overestimated in recent years, then SSB will be underestimated. The estimate of  $F_{med}$ would be more representative of current stock conditions if earlier years with different environmental influences were excluded.

### **Research Recommendations**

- The effect of missing cells and interaction terms on CPUE indices in the GLM analysis of gillnet CPUE should be investigated further.
- Comparisons are needed between the length composition estimated from the sea sampling data base and the overall length composition of landings from the gillnet fishery for comparable areas and time periods to determine if these two data sources are commensurate.
- A scientific programmer is needed for ongoing modifications to the ADAPT program. The program in general needs to be made more user friendly, thus accessible, to more assessment scientists and in particular, modifications are needed so that the VPA calculations can begin at ages other than age 1.
- The following items need to be addressed by the Methods Subcommittee:
  - a. Explore the utility of computing agedisaggregated survey indices from transformed data.
  - b. Examine the sensitivity of ADAPT results to the number of indices used in the calibration procedures.
  - c. Determine the source of bias in the bootstrap estimates of F and SSB and the potential implications of these biases to management.
- Increased sampling of offshore party boats and extended coverage in the fall and winter is needed to quantify extent of recreational catches of pollock.
- Further research is needed for understanding basic biology and life history of pollock. Trends in the mean weight-atage estimates of large fish in Canadian fishery need to be examined. An annual length-weight equation is needed for U.S. fishery. A tagging program for pollock in U.S. waters is needed to determine if migration patterns have shifted and to determine how migration affects interpretation of fishery information.

## REFERENCES

- Annand, M.C., D. Beanlands, and J. McMillan. 1988. Assessment of Divisions 4VWX and Subarea 5 pollock (*Pollachius virens*). CAFSAC [Canadian Atlantic Fisheries Scientific Advisory Committee] Res. Doc. 88/71.
- Conser, R.J. and J.E. Powers. 1990. Extensions of the ADAPT VPA tuning method designed to facilitate assessment work on tuna and swordfish stocks. *ICCAT* [International Commission for the Conservation of Atlantic Tunas] *Coll. Vol. Sci. Pap.* 32:461-467
- Effron, B. 1982. The jackknife, the bootstrap and other resampling plans. *Phila. Soc. for Ind. and Appl. Math.* 38.
- Gavaris, S. 1988. An adaptive framework for the estimation of population size. *CAFSAC* [Canadian Atlantic Fisheries Scientific Advisory Committee] *Res. Doc.* 88/29.
- Howe, A.B., D. MacIsaac, B.T. Estrella, and F.J. Germano, jr. 1979, manuscript. Fishery resource assessment, coastal Massachusetts.
  Boston, MA: Mass. Division of Marine Fisheries. Completion Report, Research Development Project No. 3-287-R-1.
- Mayo, R.K., J.M. McGlade, and S.H. Clark. 1989. Patterns of exploitation and biological status of

pollock (*Pollachius virens* L.) in the Scotian Shelf, Georges Bank, and Gulf of Maine Area. J. Northwest Atl. Fish. Sci. 9:13-36.

- Mohn, R., Halliday, R.G., and C. Annand. 1990. A review of the cod-haddock-pollock combined quota system for the under 65' mobile gear sector in the Western Scotia-Fundy Region. *CAFSAC* [Canadian Atlantic Fisheries Scientific Advisory Committee] *Res. Doc.* 90/62.
- NEFC [Northeast Fisheries Science Center]. 1989. Report of the Fall 1989 NEFC Stock Assessment Workshop (Ninth SAW). Woods Hole, MA: NOAA/NMFS/NEFC. NEFC Ref. Doc. No 89-08.
- Parrack, M.L. 1986. A method of analyzing catches and abundance indices from a fishery. *ICCAT* [International Commission for the Conservation of Atlantic Tunas] *Coll. Vol. Scl. Pap.* 24:]09-211.
- Pope, J.G. and J.G. Shepherd. 1982. A simple method for the consistent interpretation of catch-at-age data. J. Cons.- Cons. Int. Explor. Mer 40:176-184.
- Thompson, W.F. and F.H. Bell. 1934. Biological statistics of the Pacific halibut fishery. (2) Effect of changes in intensity upon total yield and yield per unit of gear. *Rep. Int. Fish. Comm.* [International Fisheries Commission] 8.

## **B. SUMMER FLOUNDER**

## TERMS OF REFERENCE

The following terms of reference were addressed:

- a. Provide updated assessment for the coastwide stock of summer flounder and provide catch and SSB options at various levels of F. (See section on estimates of stock size and fishing mortality, page 45.)
- b. Evaluate the utility of NMFS winter surveys in providing indices of relative recruitment strength and population size. Provide recommendations on the design and conduct of future such surveys. (See section on evaluation of NEFSC winter trawl survey, page 56.)
- c. Evaluate NEFSC and North Carolina sea sampling data for area and time coverage, and recommend appropriate sea sampling coverage to improve the estimates of fishery discards. (See section on evaluation of NEFSC sea sampling program, page 56.)

## INTRODUCTION

For assessment purposes, the previous definition of Wilk *et al.* (1980) of a unit stock of summer flounder extending from Cape Hatteras north to New England has been accepted.

The resource is managed under the Mid-Atlantic Fishery Management Council's (MAFMC) Fishery Management Plan (FMP) for Summer Flounder, as a single stock unit from the southern border of North Carolina, northeast to the United States-Canadian border. Amendment 2 to the FMP, approved by the Secretary of Commerce in August, 1992, enacted major regulations including:

- 1. an annual commercial fishery quota, to be distributed among states based on their shares of commercial landings during 1980-1989, beginning in 1993;
- minimum commercially-landed fish size of 13 in. (33 cm);
- 3. minimum mesh size (5.5 in. (140 mm) diamond or 6.0 in. (152 mm) square) for otter trawls on vessels possessing 100 lb

(45 kg) or more of summer flounder, except for the flynet fishery and vessels in an exempted fishery program off southern New England between 1 November and 30 April;

- 4. permit requirements for sale and purchase of summer flounder, and
- 5. a recreational fishing season limited to 15 May to 30 September, a minimum recreational-landed fish size of 14 in. (36 cm) and a 6 fish possession limit, beginning in 1993, and annually adjustable.

Additional restrictions may be implemented by individual states (*e.g.*, seasonal commercial quotas or more restrictive minimum size regulations). No directed foreign or joint venture fisheries for summer flounder are permitted, nor is retention of summer flounder as bycatch in foreign fisheries.

## **FISHERY DATA**

Northeast Region (NER; Maine to Virginia) commercial landings for 1980-1992 were derived from the Northeast Fisheries Science Center (NEFSC) commercial landings files. North Carolina commercial landings were provided by the North Carolina Division of Marine Fisheries (NCDMF). In 1992, total commercial landings were 7,300 mt. about 75% higher than the nearrecord low level in 1990, but still 25 to 50% lower than levels in the early to mid-1980s (Table B1). Between 1980 and 1988, landings ranged from 10,000 to 17,000 mt. Recreational landings were based on statistics from the National Marine Fisheries Service Marine Recreational Fishery Statistics Survey (MRFSS), for type A +B1 landings. Landings were estimated by wave, state, mode, and area and then aggregated. In 1992, recreational landings were 3,400 mt, similar to 1991 levels, but more than twice the record low observed in 1989 (1,500 mt). Landings are still well below levels in the early 1980s, when landings ranged between 5,000 and 14,000 mt (Table B1).

Age samples were available to construct the landings-at-age matrix for the NER (Maine to Virginia) commercial landings for the period 1982-1992 (Table B2). A landings-at-age matrix for 1982 to 1992 was also developed for the North Carolina winter trawl fishery (Table B3), which historically accounts for about 99% of summer

|         |            | U.S.                      |                      | <b>U.S.</b> |         |        |
|---------|------------|---------------------------|----------------------|-------------|---------|--------|
| Year    | Commercial | Recreational <sup>1</sup> | Foreign <sup>2</sup> | Total       | % Comm. | % Rec. |
| 1980    | 14,159     | 14,149                    | 75                   | 28,383      | 50      | 50     |
| 1981    | 9,551      | 4.852                     | 59                   | 14,462      | 66      | 34     |
| 1982    | 10,400     | 9,621                     | 35                   | 20,056      | 52      | 48     |
| 1983    | 13,403     | 16,357                    | **3                  | 29,760      | 45      | 55     |
| 1984    | 17,130     | 13,147                    | **                   | 30,277      | 57      | 43     |
| 1985    | 14,675     | 7,558                     | 2                    | 22,235      | 66      | 34     |
| 1986    | 12,186     | 8,497                     | 2                    | 20,685      | 59      | 41     |
| 1987    | 12,271     | 5,658                     | 1                    | 17,930      | 68      | 32     |
| 1988    | 14,686     | 8,487                     | **                   | 23,173      | 63      | 37     |
| 1989    | 8,125      | 1,460                     | NA <sup>4</sup>      | 9,585       | 85      | 15     |
| 1990    | 4,199      | 2,435                     | NA                   | 6,634       | 63      | 37     |
| 1991    | 6.224      | 3,533                     | NA                   | 9,757       | 64      | 36     |
| 1992    | 7,302      | 3,364                     | NA                   | 10,666      | 68      | 32     |
| Average | 11,101     | 7,624                     | 19                   | 18,739      | 59      | 41     |

| Table B1. | Commercial and recreational landings (metric tons, A+B1 recreational type) of summer flounder, |
|-----------|------------------------------------------------------------------------------------------------|
|           | Maine to North Carolina (NAFO Statistical Areas 5, 6) as reported by NMFS Fisheries Statistics |
|           | Division (U.S.) and NEFSC (foreign)                                                            |

<sup>1</sup> Recreational landings are aggregated from wave/state/mode/area estimates.

Foreign catch includes both directed foreign fisheries and joint venture fishing.

\*\* = Less than 0.5 mt

NA - not available

Table B2. Commercial landings at age of summer flounder (thousands), Maine to Virginia, 1982-1992<sup>1</sup>

|        |       |        |        |       | Age |     | Age |    |     |   |        |  |  |  |  |  |
|--------|-------|--------|--------|-------|-----|-----|-----|----|-----|---|--------|--|--|--|--|--|
| Year   | 0     | 1      | 2      | 3     | 4   | 5   | 6   | 7  | 8   | 9 | Total  |  |  |  |  |  |
| 1982   | 1.441 | 6,879  | 5,630  | 232   | 61  | 97  | 57  | 22 | 2   | 0 | 14,421 |  |  |  |  |  |
| 1983   | 1.956 | 12,119 | 4,352  | 554   | 30  | 62  | 13  | 17 | 4   | 2 | 19,109 |  |  |  |  |  |
| 1984 - | 1,403 | 10,706 | 6,734  | 1,618 | 575 | 72  | 3   | 5  | · 1 | 4 | 21,121 |  |  |  |  |  |
| 1985   | 840   | 6,441  | 10,068 | 956   | 263 | 169 | 25  | 4  | 2   | 1 | 18,769 |  |  |  |  |  |
| 1986   | 407   | 7.041  | 6,374  | 2,215 | 158 | 93  | 29  | 7  | 2   | 0 | 16,326 |  |  |  |  |  |
| 1987   | 332   | 8,908  | 7,456  | 935   | 337 | 23  | 24  | 27 | 11  | 0 | 18,053 |  |  |  |  |  |
| 1988   | 305   | 11,116 | 8,992  | 1,280 | 327 | 79  | 18  | 9  | 5   | 0 | 22,131 |  |  |  |  |  |
| 1989   | 96    | 2,491  | 4,829  | 841   | 152 | 16  | 3   | 1  | 1   | 0 | 8,430  |  |  |  |  |  |
| 1990   | 0     | 2,670  | 861    | 459   | 81  | 18  | 6   | 1  | 1   | 0 | 4,096  |  |  |  |  |  |
| 1991   | 0     | 3,755  | 3,256  | 142   | 61  | 11  | · 1 | 1  | 0   | 0 | 7,227  |  |  |  |  |  |
| 1992   | 110   | 5,555  | 3,448  | 326   | 19  | 21  | 0   | 1  | 0   | 0 | 9,479  |  |  |  |  |  |

<sup>1</sup>Does not include discards, assumes catch not sampled by NEFSC weighout has same biological characteristics as weighout catch.

flounder commercial landings in North Carolina. The matrix is based on NCDMF fishery length frequency samples and age-length keys from NEFSC commercial and spring survey data (1982 to <sup>\*</sup>1987) or NCDMF commercial fishery data (1988 to 1992). NCDMF length and age composition data for 1992 are provisional.

Discards from the commercial fishery during 1989-1992 were estimated using observed discards and days fished from NEFSC sea sampling trips to calculate fishery discard rates by twodigit statistical area and calendar quarter. These rates were applied to the total days fished (days fished on trips landing any summer flounder) from the weighout data base in the corresponding area-quarter cell. to provide estimates of fishery discard by cell. Discard estimates were then aggregated over all cells (for example, see Table B4). That total was then raised to reflect potential discard associated with general canvas and North Carolina EEZ landings. Discussion of sampling adequacy appears later, in the section on evaluation of the NEFSC Sea Sampling Program (page56).

|      |     |       | Age   |     |     |    |    |     | 2  |        |  |
|------|-----|-------|-------|-----|-----|----|----|-----|----|--------|--|
| Year | 0   | 1     | 2     | 3   | 4   | 5  | 6  | 7   | 8  | Total  |  |
| 1982 | 981 | 3,463 | 1,022 | 142 | 52  | 19 | 6  | . 4 | 2  | 5,692  |  |
| 1983 | 492 | 3,778 | 1,581 | 287 | 135 | 41 | 3  | 3   | <1 | 6,321  |  |
| 1984 | 907 | 5,658 | 3,889 | 550 | 107 | 18 | <1 | 0   | 0  | 11,130 |  |
| 1985 | 198 | 2,974 | 3.529 | 338 | 85  | 24 | 5  | <1  | 0  | 7.154  |  |
| 1986 | 216 | 2,478 | 1,897 | 479 | 29  | 32 | 1  | 1   | <1 | 5,134  |  |
| 1987 | 233 | 2,420 | 1,299 | 265 | 28  | 1  | 0  | 0   | 0  | 4,243  |  |
| 1988 | 0   | 2,917 | 2,225 | 471 | 228 | 39 | 1  | 6   | <1 | 5,878  |  |
| 1989 | 2   | 49    | 1,437 | 716 | 185 | 37 | 1  | . 2 | 0  | 2,429  |  |
| 1990 | 2   | 142   | 730   | 418 | 117 | 12 | 1  | <1  | 0  | 1,424  |  |
| 1991 | 0   | 382   | 1,641 | 521 | 116 | 20 | 2  | <1  | 0  | 2,682  |  |
| 1992 | 0   | 49    | 1,316 | 963 | 147 | 26 | 1  | 1   | 0  | 2,503  |  |

 Table B3. Number (thousands) of summer flounder at age landed in the North Carolina commercial winter trawl fishery, 1982-1992<sup>1</sup>

<sup>1</sup> The 1982-1987 NCDMF length samples were aged using NEFSC age-lengths keys for comparable times and areas (*i.e.*, same quarter and statistical areas). The 1988-1992 NCDMF length samples were aged using NCDMF age-lengths keys.

| Table B4. Summar | y of sea sample data | ι for summer flounder b | y NAFO division and ( | quarter for 1989 <sup>1</sup> |
|------------------|----------------------|-------------------------|-----------------------|-------------------------------|
|                  |                      |                         |                       |                               |

| DIV                                           | <b>G</b> TR | SSTRIPS | KDF  | DDF | WO DF  | SS_EST LAND<br>(mt) | WO LAND<br>(mt) | SS EST DISC<br>(mt) |
|-----------------------------------------------|-------------|---------|------|-----|--------|---------------------|-----------------|---------------------|
| 51                                            | 1.          | 0       | . 0  | 0   | 85     | 0                   | 2               | 0                   |
|                                               | 2           | 1       | 66   | <1  | 137    | 9                   | 4               | <1                  |
|                                               | 3           | 0       | 0    | 0   | 75     | 0                   | 3<br>3          | 0                   |
| 21.5                                          | 4           | 1       | 19   | <1  | 157    | 3                   | 3               | <1                  |
| 52                                            | 1           | 1       | 756  | 48  | 1319   | 998                 | 687             | 64                  |
|                                               | 2           | 5       | 3    | 8   | 1250   | 4                   | 129             | 10                  |
|                                               | 3           | 2       | 280  | <1  | 536    | 150                 | 9               | <1                  |
|                                               | 4           | 1       | 35   | 40  | 1545   | 54                  | - 98            | 61 ·                |
| 53                                            | 1           | 4       | 588  | 41  | 689    | 405                 | 473             | 29                  |
|                                               | 2           | 10      | 68   | <1  | 2045   | 138                 | 224             | 2                   |
|                                               | 3           | 5       | 260  | 2   | 1619   | 421                 | 298             | 4                   |
|                                               | 4           | 3       | 91   | 6   | 898    | 82                  | 330             | 6                   |
| 61                                            | 1           | 4       | 544  | 51  | 1661   | 904                 | 528             | 84                  |
|                                               | 2           | 5       | 107  | 4   | 1391   | 149                 | 165             | 5                   |
|                                               | 3           | 0       | 213  | 24  | 513    | 109                 | 106             | 13                  |
|                                               | 4           | 5       | 142  | 38  | 575    | .82                 | 125             | 22                  |
| 62                                            | 1           | 5       | 934  | .84 | 1867   | 1744                | 1460            | 158                 |
|                                               | 2           | 2       | 244  | 101 | 922    | 225                 | 85              | 93                  |
|                                               | 3           | 8       | 213  | 24  | 216    | 46                  | 104             | 5                   |
|                                               | 4           | - 1     | 672  | 17  | 1118   | 752                 | 361             | 19                  |
| 63                                            | 1           | 2       | 1116 | 110 | 490    | 546                 | 323             | 54                  |
| aya ta ana ang ang ang ang ang ang ang ang an | 2           | · 0     | 244  | 101 | 41     | 10                  | 9               | 4                   |
|                                               | 3           | 0       | 213  | 24  | 40     | 9                   | <1              | 1                   |
|                                               | 4           | 0       | 672  | 17  | 616    | 415                 | 292             | 10                  |
| Total/Mean                                    | 1.4.4       | 65      | 296  | 28  | 19,805 | 7,255               | 5,817           | 642                 |

<sup>\*</sup> 1 DIV =NAFO Division; QTR = Quarter; SSTRIPS = Number of sea sampling trips; trips in more than one statistical area are split KDF, DDF = kept and discard rates, kilograms per day fished); WODF = NEFSC weighout database days fished on trips landing any summer flounder; SS EST LAND MT = Estimate of landings calculated from sea sampling kept rates and NEFSC weighout database days fished; WO LAND MT = Landings as recorded in the NEFSC weighout database; SS EST DISC MT = Sea sampling estimate of discard in mt

Table B5. Summary of Northeast Region sea sample data to estimate summer flounder discard at age in the commercial fishery, 1989-1992<sup>1</sup>

| Year | Lengths | Ages | Sea Sample<br>Discard<br>(mt) | Sampling<br>Intensity<br>(mt/100 lengths) | Raised Discard<br>Estimate<br>(mt) |                                                                                                                 |
|------|---------|------|-------------------------------|-------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 1989 | 2,337   | 54   | 642                           | 26                                        | 886                                |                                                                                                                 |
| 1990 | 3,891   | 453  | 1.121                         | 29                                        | 1,516                              |                                                                                                                 |
| 1991 | 5,326   | 190  | 993                           | 19                                        | 1,315                              | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - |
| 1992 |         |      | 956                           |                                           | 1.111                              |                                                                                                                 |

### Discard Numbers at Age (thousands)

| Year | 0     | . 1   | 2   | Total |
|------|-------|-------|-----|-------|
| 1989 | 969   | 2,035 | 118 | 3,122 |
| 1990 | 1,800 | 3,441 | 84  | 5,325 |
| 1991 | 1.114 | 4,280 | <1  | 5,394 |
| 1992 | 1,160 | 2,916 | 60  | 4.137 |

### Discard Mean Length at Age

| Year | 0    | 1    | 2    | All  |
|------|------|------|------|------|
| 1989 | 25.9 | 31.5 | 44.2 | 30.2 |
| 1990 | 29.0 | 31.7 | 38.9 | 30.9 |
| 1991 | 24.0 | 30.9 | 37.0 | 29.5 |
| 1992 | 26.8 | 31.3 | 42.0 | 30.2 |

#### Discard mean weight at age

| Year              | 0     | 1     | 2     | A11   |
|-------------------|-------|-------|-------|-------|
| 1989              | 0.182 | 0.296 | 0.909 | 0.284 |
| 1990              | 0.235 | 0.304 | 0.559 | 0.285 |
| 1991              | 0.124 | 0.275 | 0.491 | 0.244 |
| 1992 <sup>2</sup> | 0.190 | 0.290 | 0.763 | 0.269 |

Estimates developed using sea sample length samples, age-length data, and estimates of total discard in mt. Age-length keys applied on semi-annual basis because of length frequency sample size limitations. The 1989 quarter 1 and 2 lengths were aged with combined commercial and survey keys, due to lack of discard age samples.

<sup>2</sup> Because 1992 length data were not available to the committee, mean 1989-1991 proportions, mean lengths, and mean weights at age were assumed for the 1992 discard.

A discard-at-age matrix for 1989-1992 was developed using sea sampled length frequency and age-length distribution samples from 1989-1991, and assuming biological characteristics of 1992 discards were the same as 1989-1991 averages (Table B5), because sea sample length frequency data necessary to characterize the 1992 discard were not available in time to be used in the assessment. Sampling intensity was at least one 100 length sample per 26 mt. Although data are inadequate to develop a commercial discard-at-age matrix for 1982-1988, it is likely

that discard numbers were small relative to landings during that period, because there was no minimum size limit for fish caught in the EEZ, but increased in 1989-1992 with the initial implementation of minimum size regulations for the EEZ in 1989. Not accounting directly for commercial fishery discards will result in underestimation of fishing mortality and population sizes in 1982-1988.

The procedure to estimate total discard uses strata that are on a much finer scale (division and quarter) than that subsequently used when length

|      |       |        |       |       | . <b>_</b> | Age  |          |          | ;          |        |
|------|-------|--------|-------|-------|------------|------|----------|----------|------------|--------|
| Year | 0     | 1      | 2     | 3     | 4          | 5    | 6        | 7        | 8          | Total  |
|      |       |        | -     |       | . *<br>*.  |      |          |          | 21.<br>21. |        |
| 1982 | 2,802 | 8,728  | 5,678 | 440   | 167        | <1   | 5        | 0        | 0          | 17,820 |
| 1983 | 9,541 | 17.374 | 2,857 | 231   | 2          | - <1 | · · O    | <b>0</b> | 0          | 30,005 |
| 1984 | 9,746 | 15,250 | 3,619 | 1,233 | 393        | 157  | 106      | 0        | 0          | 30,504 |
| 1985 | 1,391 | 7,518  | 3,913 | 1,511 | 1.315      | 120  | 105      | 0        | 0          | 15,873 |
| 1986 | 3,788 | 6,651  | 2,394 | 1,472 | 108        | 371  | 120      | 12       | 0          | 14,916 |
| 1987 | 1,828 | 7,710  | 1.671 | 451   | 247        | 4    | 8        | 37       | 0          | 11,955 |
| 1988 | 3,104 | 7,188  | 3,187 | 693   | 289        | 44   | 44       | 7        | ; <b>0</b> | 14,556 |
| 1989 | 150   | 688    | 747   | 427   | 19         | 12   | ·· • • • | 0        | 0          | 2,043  |
| 1990 | . 250 | 4,469  | 566   | 118   | 4          | 1    | .1       | 0        | 0          | 5,409  |
| 1991 | 677   | 5,107  | 2,443 | 96    | 37         | 10   | ·* <1 ·  | 0        | 0          | 8,371  |
| 1992 | 187   | 4,943  | 1,667 | 276   | <1         | 31   | . 0      | 0        | . 0        | 7,105  |

 Table B6.
 Estimated recreational catch at age of summer flounder (thousands), MRFSS 1982-1992 (catch type A+B1+B2)<sup>1</sup>

<sup>1</sup> Includes catch type B2 (fish released alive) allocated to age groups 0 and 1 with 25% hooking mortality.

Table B7. Total catch at age of summer flounder (thousands), Maine to North Carolina, 1982-1992

| Year |        | • •    |        |       | A     | ge . |     |    |     |   | Total  |
|------|--------|--------|--------|-------|-------|------|-----|----|-----|---|--------|
|      | 0      | 1      | 2      | 3     | 4     | 5    | 6   | 7  | 8   | 9 |        |
| 1982 | 5,225  | 19,070 | 12,329 | 814   | 280   | 116  | 68  | 26 | 4   | 0 | 37,932 |
| 1983 | 11,989 | 33,271 | 8,790  | 1.072 | 167   | 103  | 16  | 20 | 5   | 2 | 55,436 |
| 1984 | 12,056 | 31,614 | 14,242 | 3,401 | 1.075 | 247  | 110 | 5  | 1   | 4 | 62,755 |
| 1985 | 2,427  | 16,933 | 17,510 | 2,805 | 1,663 | 313  | 135 | 5  | 2   | 1 | 41,794 |
| 1986 | 4,411  | 16,170 | 10,665 | 4,166 | 295   | 496  | 150 | 20 | 86  | 0 | 36,458 |
| 1987 | 2,393  | 19.038 | 10,426 | 1,651 | 609   | 28   | 32  | 63 | .11 | 0 | 34,251 |
| 1988 | 3,409  | 21,221 | 14,404 | 2,444 | 843   | 162  | 63  | 22 | 6   | 0 | 42,574 |
| 1989 | 1,217  | 5,263  | 7,131  | 1,984 | 356   | 65   | 8   | 3  | 7   | 0 | 16,034 |
| 1990 | 2,052  | 10,723 | 2.241  | 995   | 202   | 36   | 8   | 2  | 1   | 0 | 16,259 |
| 1991 | 1,791  | 13,524 | 7,340  | 759   | 214   | 40   | 4   | 1  | 0.0 | 0 | 23,674 |
| 1992 | 1,457  | 13,463 | 6,491  | 1,565 | 167   | 78   | 2   | 1. | 0   | 0 | 23,223 |
|      |        |        |        |       |       |      |     |    |     | : |        |

and age samples are applied to estimate the age composition of the discard. This is inconsistent, and so use of a coarser stratum level in the estimation of total discard may be sufficient.

Estimates of recreational landings at age (type A+ B1) were developed from MRFSS sample length frequencies, and NEFSC commercial and survey age-length data. Estimates of recreational discards at age were based on assumptions that the ratio of age 0 : age 1 fish in type B2 catches were the same as in A + B1 landings and that 25% of type B2 catches die of hooking mortality. Type B2 catches have become a more significant component of total recreational catches (up to 60% in recent years) as minimum size regulations have been implemented on a stateby-state basis. The combined recreational catch at age matrix (landed plus discarded dead) is displayed in Table B6.

NER commercial and North Carolina winter trawl landings at age, total commercial discard at age, and recreational catch at age totals were summed to provide a total fishery catch-at-age matrix (Table B7). The numbers and proportions at age of fish age 4 and older are low and quite variable, reflecting the limited numbers of fish available in the stock and thus available to be sampled. For assessment purposes, ages 0 to 4 and an ages 5+ grouping were used in further analyses. Overall mean lengths and weights at age for the total catch were calculated as weighted means (by number in the catch at age) of the respective mean values at age from the NER (Maine to Virginia) commercial, North Carolina

| Year |      |      |             |      |      | Age  |      |      |      |                                           | Mean Length |
|------|------|------|-------------|------|------|------|------|------|------|-------------------------------------------|-------------|
|      | 0    | 1    | 2           | 3    | 4    | 5    | 6    | 7    | 8    | 9                                         | All Ages    |
| 1982 | 29.1 | 34.8 | 39.3        | 52.5 | 56.8 | 61.0 | 60.3 | 68.0 | 70.6 |                                           | 36.2        |
| 1983 | 28.0 | 35.1 | 41.9        | 48.9 | 50.3 | 53.6 | 60.6 | 65.1 | 69.4 | 72.0                                      | 35.0        |
| 1984 | 28.8 | 33.8 | 39.1        | 46.0 | 51.9 | 58.3 | 70.8 | 68.4 | 74.0 | 70. <b>7</b>                              | 35.2        |
| 1985 | 30.3 | 34.6 | 38.7        | 46.5 | 54.5 | 58.9 | 68.1 | 74.5 | 73.3 | 75.0                                      | 38.0        |
| 1986 | 29.8 | 35.4 | 39.6        | 47.6 | 54.3 | 59.3 | 65.2 | 72.4 | 77.8 |                                           | 38.0        |
| 1987 | 29.2 | 35.3 | 39.6        | 46.5 | 55.6 | 63.1 | 66.5 | 70.6 | 73.5 |                                           | 37.2        |
| 1988 | 31.3 | 35.8 | 39.1        | 46.2 | 54.3 | 60,0 | 72.7 | 68.7 | 72.8 |                                           | 37.7        |
| 1989 | 27.0 | 35.5 | 40.7        | 45.7 | 50.8 | 58.7 | 60.0 | 63.1 | 59.0 |                                           | 38.9        |
| 1990 | 29.3 | 35.1 | 42:0        | 47.0 | 51.4 | 59.3 | 64.2 | 71.4 | 75.2 | 1. A. | 36.3        |
| 1991 | 26.7 | 34.3 | 40.6        | 47.0 | 54.4 | 60.9 | 65.6 | 68.4 |      |                                           | 36.3        |
| 1992 | 26.9 | 35.9 | <b>41.2</b> | 48.7 | 54.6 | 63.4 | 61.4 | 74.0 |      |                                           | 37.9        |

Table B8. Mean length (centimeters) at age of summer flounder catch, Maine to North Carolina, 1982-1992

Table B9. Mean weight (kilograms) at age of summer flounder catch, Maine to North Carolina, 1982-1992

| Year       |       |       |       |       |       | Age   |       |       |       | M     | ean Weight |
|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------|
| <b>.</b> . | 0     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | All Ages   |
| 1982       | 0.254 | 0.435 | 0.654 | 1.687 | 2.135 | 2.795 | 2.621 | 3.762 | 4.284 |       | 0.534      |
| 1983       | 0.218 | 0.447 | 0.786 | 1.297 | 1.466 | 1.706 | 2.567 | 3.169 | 3.875 | 4.370 | 0.475      |
| 1984       | 0.228 | 0.399 | 0.640 | 1.055 | 1.592 | 2.245 | 3.476 | 3.620 | 4.640 | 4.030 | 0.484      |
| 1985       | 0.282 | 0.426 | 0.612 | 1.092 | 1.782 | 2.343 | 2.670 | 4.682 | 4.780 | 4.800 | 0.610      |
| 1986       | 0.256 | 0.454 | 0.659 | 1.173 | 1.790 | 2.503 | 3.268 | 2.994 | 4.415 |       | 0.622      |
| 1987       | 0.239 | 0.446 | 0.648 | 1.117 | 1.934 | 2.853 | 3.080 | 3.020 | 4.140 |       | 0.559      |
| 1988       | 0.287 | 0.468 | 0.628 | 1.109 | 1.787 | 2.480 | 3.888 | 3.701 | 4.319 |       | 0.581      |
| 1989       | 0.206 | 0.451 | 0.711 | 1.041 | 1.504 | 2.454 | 2.577 | 3.105 | 2.251 |       | 0.655      |
| 1990       | 0.244 | 0.432 | 0.800 | 1.176 | 1.561 | 2.519 | 3.026 | 4.555 | 5.029 |       | 0.525      |
| 1991       | 0.184 | 0.402 | 0.700 | 1.167 | 1.892 | 2.674 | 3.394 | 3.817 |       | · ·   | 0.520      |
| 1992       | 0.208 | 0.458 | 0.756 | 1.380 | 1.955 | 3.005 | 2.878 | 4.590 |       |       | 0.607      |

commercial winter trawl, and recreational (Maine to North Carolina) fisheries and commercial discards (Tables B8 and B9).

## STOCK ABUNDANCE INDICES

Standardized indices of abundance (general linear models or GLM) based on year category regression coefficients were developed based on the NEFSC commercial weighout data base for the NER (trips landing more than 10% summer flounder). The time series was split into two separate periods because low numbers of age 0 and age 1 fish in the landings in 1989-1992 may reflect effects of individual state minimum landed sizes rather than abundance during the latter period. Those GLMs, incorporating main effects of year, tonnage class, and fishing area main, explained 22% and 12% of the variance in landings per unit effort for the 1982 to 1988 and 1989 to 1992 models, respectively. The model results indicate a decline in stock size from 1982 to 1988. Lowest levels were observed in 1990, with a slight increase since then.

Mean catch per trip (unstandardized) was calculated for summer flounder harvested from the North Carolina winter trawl fishery for 1982 to 1991. Index levels from 1985 to 1991 are lower relative to levels observed in 1983 and 1984, but show an increasing trend since 1989.

A GLM of the MRFSS estimates of catch rate (mean catch number per angler per trip, A + B1+ B2 type catch, intercept data, 1982 to 1992) was used to produce a standardized index of abundance incorporating effects of year, subregion and mode, which accounted for about 41% of the variance in CPUE. No trend in abundance has been clear in recent years, as the index has been highly variable, although the low level in 1989 was likely due to the poor 1988 year class recruiting to the recreational fishery at age 1.

An index based on the New York Department

|      |      |      |      |      |      |          |      |                                                                                                                                                                                                                                     |               |                                          |       | _ |
|------|------|------|------|------|------|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------|-------|---|
| Year |      |      |      |      |      | -<br>Age |      |                                                                                                                                                                                                                                     |               |                                          | Total |   |
|      | 1    | 2    | 3    | 4    | 5    | 6        | 7    | 8                                                                                                                                                                                                                                   | 9             | 10                                       |       |   |
| 1976 | 0.03 | 1.70 | 0.68 | 0.28 | 0.01 | 0.01     | 0.01 |                                                                                                                                                                                                                                     | ÷ .           |                                          | 2.72  |   |
| 1977 | 0.61 | 1.30 | 0.70 | 0.10 | 0.09 | 0.01     |      | 0.01                                                                                                                                                                                                                                |               |                                          | 2.82  |   |
| 1978 | 0.70 | 0.95 | 0.66 | 0.19 | 0.04 | 0.03     | 0.03 |                                                                                                                                                                                                                                     | n an<br>Artic | 0.02                                     | 2.62  |   |
| 1979 | 0,06 | 0.18 | 0.08 | 0.04 | 0.03 |          |      | 0.01                                                                                                                                                                                                                                |               | AND A                                    | 0.40  | : |
| 1980 | 0.01 | 0.71 | 0.31 | 0.14 | 0.02 | 0.06     | 0.03 | 0.01                                                                                                                                                                                                                                |               | 0.01                                     | 1.31  |   |
| 1981 | 0.59 | 0.53 | 0.17 | 0.08 | 0.05 | 0.03     | 0.02 | 0.01                                                                                                                                                                                                                                |               |                                          | 1.48  |   |
| 1982 | 0.69 | 1.41 | 0.12 | 0.03 |      | · · · .  | •    | e de la composición d<br>Composición de la composición de la comp |               |                                          | 2.24  |   |
| 1983 | 0.32 | 0.39 | 0.19 | 0.04 | 0.01 |          |      |                                                                                                                                                                                                                                     | 0.01          | eg the second                            | 0.95  |   |
| 1984 | 0.17 | 0.33 | 0.09 | 0.05 |      | 0.01     | 0.01 | •                                                                                                                                                                                                                                   |               |                                          | 0.66  |   |
| 1985 | 0.55 | 1.56 | 0.21 | 0.04 | 0.02 |          | · ·  |                                                                                                                                                                                                                                     | 14 M A        |                                          | 2.38  |   |
| 1986 | 1.49 | 0.43 | 0.20 | 0.02 | 0.01 |          |      |                                                                                                                                                                                                                                     |               | an a | 2.15  |   |
| 1987 | 0.46 | 0.43 | 0.02 | 0.02 |      |          | •    |                                                                                                                                                                                                                                     |               |                                          | 0.92  |   |
| 1988 | 0.59 | 0.79 | 0.07 | 0.03 |      |          |      |                                                                                                                                                                                                                                     |               |                                          | 1.47  |   |
| 1989 | 0.06 | 0.23 | 0.02 | 0.01 |      |          |      |                                                                                                                                                                                                                                     |               |                                          | 0.32  |   |
| 1990 | 0.62 | 0.03 | 0.06 |      |      |          |      |                                                                                                                                                                                                                                     |               | an a | 0.71  |   |
| 1991 | 0.81 | 0.28 |      | 0.02 |      |          |      |                                                                                                                                                                                                                                     |               |                                          | 1.11  |   |
| 1992 | 0.75 | 0.41 | 0.01 |      | 0.01 |          |      |                                                                                                                                                                                                                                     |               |                                          | 1.19  |   |
|      | :    |      |      |      |      |          |      |                                                                                                                                                                                                                                     |               | <b>.</b> .                               |       |   |
|      | м    |      |      |      |      |          |      | ·                                                                                                                                                                                                                                   |               |                                          |       |   |
| •    |      |      |      |      | ÷    |          |      |                                                                                                                                                                                                                                     |               | 1.1                                      |       |   |

Table B10. NEFSC spring trawl survey (offshore strata) mean number of summer flounder per tow at age (delta values)

of Environmental Conservation (NYDEC) party boat angler survey (1985 to 1992) showed declines to low levels in 1989, with 1990 to 1992 levels below those of 1985 to 1988.

Age-specific mean catch rates, in numbers, from the NEFSC spring offshore survey (Table B10; 1976-1992), the Massachusetts Department of Marine Fisheries (MADMF) spring and fall inshore surveys (Table B11; 1978-1992), the Connecticut Department of Environmental Protection (CTDEP) spring to fall trawl survey (Table B12; 1984-1992), and the Rhode Island Division of Fish and Wildlife (RIDFW) fall trawl survey (Table B13; 1979-1992) were available as indices of abundance. (Only two years of observations from the NEFSC winter trawl survey were available. Utility of that survey is discussed later in the section on evaluation of NEFSC winter trawl "survey, page 56 ).

Young-of-year (YOY) survey indices were also available from NCDMF Pamlico Sound trawl survey (1987-1992), Virginia Institute of Marine Science (VIMS) juvenile fish trawl survey (1979-1992), Maryland Department of Natural Resources (MDDNR) trawl survey (1972-1991), Delaware Division of Fish and Wildlife (DEDFW) Delaware Bay trawl survey (1980-1992) and MADMF beach

seine survey (Table B14). The Virginia, North Carolina, and Rhode Island YOY indices have correlated best with VPA estimates of age 0 fish, and so receive high weight in the tuning procedure (Figure B1a). The Massachusetts, Maryland, and Delaware YOY indices do not track the VPA estimates as well, and receive less weight in the tuning (Figure B1b). Because values of zero were observed in the Rhode Island and Massachusetts YOY time series, a value of 1 was added to each value in the series when used for VPA tuning. Most surveys agreed that the 1980, 1983 and 1985 year classes were the largest of the past decade, with the 1988 year class the poorest since 1980. Most surveys reflect a trend of improved recruitment since 1988.

# ESTIMATES OF STOCK SIZE AND FISHING MORTALITY

ADAPT tuning for the VPA (1982 to 1992) was used. All survey indices were included in the tuning procedure, weighted by the inverse of their residual variances. Commercial and recreational fisheries indices were not included be-

|        |         |       |       |       | Age   |       |                        |                                           |            | Total  |
|--------|---------|-------|-------|-------|-------|-------|------------------------|-------------------------------------------|------------|--------|
|        | 0       | 1     | 2     | 3     | 4     | 5     | 6                      | 7                                         | 8+         |        |
| Spring |         |       |       | · · · |       | ·     |                        |                                           |            |        |
| 1978   |         | 0.097 | 0.520 | 0.274 | 0.221 |       | 0.042                  | 1.12                                      |            | 1.15   |
| 1979   |         | 0.037 | 0.084 | 0.087 |       | 0.048 | 0.011                  |                                           |            | 0.37   |
| 1980   | -       | 0.055 | 0.061 | 0.052 | 0.075 | 0.053 | 0.055                  | 0.011                                     |            | 0.36   |
| 1981   | 0.010   | 0.395 | 0.558 | 0.074 | 0.031 | 0.043 | 0.060                  | 0.011                                     | 0.031      | 1.20   |
| 1982   | 0.010   | 0.376 | 1.424 | 0.118 | 0.084 | 0.020 | 0.000                  | 0.010                                     | 0.001      | 2.03   |
| 1983   |         | 0.241 | 1.304 | 0.544 | 0.021 | 0.009 | 0.003                  | 0.0.0                                     |            | 2.12   |
| 1984   |         | 0.042 | 0.073 | 0.063 | 0.111 | 0.010 | 0.000                  |                                           |            | 0.30   |
| 1985   | · . · · | 0.142 | 1.191 | 0.034 | 0.042 |       | the state              |                                           |            | 1.41   |
| 1986   |         | 0.966 | 0.528 | 0.140 | 0.008 |       |                        | •                                         |            | 1.64   |
| 1987   |         | 0.615 | 0.583 | 0.012 |       |       | 0.011                  | · · ·                                     | i di       | 1.22   |
| 1988   | 1.1.1   | 0.153 | 0.966 | 0.109 | 0.012 |       |                        |                                           | 1200       | 1.24   |
| 1989   |         |       | 0.338 | 0.079 |       |       | 0.010                  |                                           | · · · · .  | 0.43   |
| 1990   |         | 0.247 | 0.021 | 0.079 | 0.012 |       |                        |                                           |            | 0.36   |
| 1991   |         | 0.029 | 0.048 | 0.010 |       |       |                        |                                           |            | 0.09   |
| 1992   |         | 0.274 | 0.320 | 0.080 |       | 0.011 | 0.011                  |                                           |            | 0.70   |
|        |         |       |       |       |       |       |                        | .1                                        |            | ·      |
| Fall   |         |       |       |       |       |       |                        |                                           | . :        | in the |
| 1978   |         | 0.011 | 0.124 | 0.024 |       | 0:007 |                        |                                           | s - 1      | 0.17   |
| 1979   |         | 0.011 | 0.047 | 0.101 |       | 0.019 |                        |                                           |            | 0.17   |
| 1980   |         | 0.114 | 0.326 | 0.020 | 0.020 | 0.010 |                        | ÷ .                                       |            | 0.49   |
| 1981   | 0.009   | 0.362 | 0.367 | 0.011 | 0.0   | 0.010 |                        |                                           |            | 0.75   |
| 1982   | 0.000   | 0.255 | 1.741 | 0.016 |       |       |                        |                                           |            | 2.01   |
| 1983   |         | 0.026 | 0.583 | 0.140 | 0.004 |       |                        |                                           |            | 0.75   |
| 1984   | 0.033   | 0.453 | 0.249 | 0.120 | 0.008 |       |                        |                                           |            | 0.86   |
| 1985   | 0.051   | 0.108 | 1.662 | 0.033 |       |       |                        | an an ann an   | na gina da | 1.85   |
| 1986   | 0.128   | 2.149 | 0.488 | 0.128 |       |       |                        |                                           |            | 2.89   |
| 1987   |         | 1.159 | 0.598 | 0.010 | 0.004 |       |                        | - 14<br>                                  |            | 1.77   |
| 1988   |         | 0.441 | 0.414 | 0.018 |       |       | $e^{-\frac{1}{2}}$ (1) |                                           |            | 0.87   |
| 1989   |         |       | 0.286 | 0.024 | <     |       |                        | 1. A. | -<br>      | 0.31   |
| 1990   |         | 0.108 |       | 0.012 |       |       | · ·                    |                                           |            | 0.12   |
| 1991   | 0.021   | 0.493 | 0.262 | 0.010 |       |       |                        |                                           |            | 0.79   |
| 1992   |         | 1.055 | 0.233 |       |       |       |                        |                                           |            | 1.29   |

Table B11. Stratified mean number per tow at age from MADMF Spring and Fall survey cruises, 1978-1992

Table B12. Summer flounder index of abundance from the CTDEP spring to fall (April to September) trawl survey, 1984-1992<sup>1</sup>

| Year               | •        |               |        | A     | ge    |          |                                                                                                                |                                           | Total    |                                                                                                                |
|--------------------|----------|---------------|--------|-------|-------|----------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------|
|                    | 1        | 2             | 3      | 4     | 5     | 6        | 7                                                                                                              | 8                                         | <u> </u> |                                                                                                                |
| 1984               | 0.609    | 0.201         | 0.042  | 0.027 | 0.014 | 0.005    |                                                                                                                |                                           | 0.98     |                                                                                                                |
| 1985               | 0.496    | 0.344         | 0.061  | 0.024 | 0.016 | 0.012    |                                                                                                                |                                           | 0.95     |                                                                                                                |
| 1986               | 1.775    | 0.278         | 0.107  | 0.020 |       |          | 0.004                                                                                                          | 0.004                                     | 2.19     | • • • •                                                                                                        |
| 1987               | 1.347    | 0.205         | 0.031  | 0.021 | 0.003 | 0.007    | . :                                                                                                            |                                           | 1.61     |                                                                                                                |
| 1988               | 0.680    | 0.382         | 0.064  | 0.034 | 0.006 | . 1      |                                                                                                                |                                           | 1.17     |                                                                                                                |
| 1989               | 0.021    | 0.082         | 0.023  | 0.009 | 0.003 | 0.003    |                                                                                                                |                                           | 0.15     |                                                                                                                |
| 1990               | 0.524    | 0.205         | 0.037  | 0.013 | 0.007 |          | 14                                                                                                             |                                           | 0.78     | · · · · ·                                                                                                      |
| 1991               | 0.780    | 0.324         | 0.118  | 0.009 | 0.003 | 0.006    | 1                                                                                                              |                                           | 1.23     |                                                                                                                |
| 1992               | 0.821    | 0.411         | 0.127  | 0.028 | 0.006 | 0.004    | 0.004                                                                                                          | 1                                         | 1.40     | de la companya de la |
| <sup>1</sup> Delta | mean num | ber per tow : | at age |       |       | n in sta | ing and a second se | en an |          |                                                                                                                |

ter a travela A travela

| Year | Mean<br>#/tow | Mean<br>kg/tow | Proportion <sup>1</sup><br>Age 0 | Mean Age 0<br>#/tow | Proportion <sup>2</sup><br>Age 1 | Mean Age 1<br>#/tow |
|------|---------------|----------------|----------------------------------|---------------------|----------------------------------|---------------------|
| 1979 | 0.24          | 0.13           | 0.00                             | 0.00                | 0.67                             | 0.16                |
| 1980 | 0.81          | 1.37           | 0.10                             | 0.08                | 0.31                             | 0.25                |
| 1981 | 3.24          | 2.13           | 0.05                             | 0.16                | 0.65                             | 2.13                |
| 1982 | 0.83          | 0.68           | 0.00                             | 0.00                | 0.43                             | 0.36                |
| 1983 | 0.62          | 0.57           | 0.03                             | 0.02                | 0.40                             | 0.25                |
| 1984 | 1.35          | 0.95           | 0.12                             | 0.16                | 0.63                             | 0.85                |
| 1985 | 0.95          | 0.52           | 0.35                             | 0.33                | 0.35                             | 0.33                |
| 1986 | 3.49          | 2.05           | 0.18                             | 0.63                | 0.63                             | 2.20                |
| 1987 | 1.41          | 0.90           | 0.31                             | 0.44                | 0.51                             | 0.72                |
| 1988 | 0.57          | 0.42           | 0.03                             | 0.02                | 0.71                             | 0.40                |
| 1989 | 0.07          | 0.10           | 0.00                             | 0.00                | 0.60                             | 0.04                |
| 1990 | 0.83          | 0.54           | 0.07                             | 0.06                | 0.57                             | 0.47                |
| 1991 | 0.23          | 0.23           | 0.19                             | 0.04                | 0.31                             | 0.07                |
| 1992 | 1.26          | 1.11           | 0.00                             | 0.00                | 0.56                             | 0.71                |

Table B13. Summer flounder index of abundance. RIDFW fall trawl survey

<sup>2</sup> Proportion of 30 cm ≤ catch < 40 cm</p>

cause of trends in residuals observed in initial runs, potentially indicating changes in catchability over time that could bias the estimates of stock size and F. Natural mortality was assumed to be 0.2. Fishing mortality rates and abundances of ages 1 to 3 were estimated for 1993 in the tuning. Abundance of ages 4 and 5+ were estimated from F's estimated in 1992 and the input partial recruitment pattern. Because no recruitment indices were available for 1993, stock size at age 0 was not estimated. The F on the age 5+ group was set equal to the rate for age 4.

Fishing mortality in 1990-1992 has declined from peak levels in 1988-1989 but is estimated to exceed 1.0. For the final VPA, the fully recruited fishing mortality rate (ages 2-4,u) in 1992 was estimated to be about 1.1 (Table B15, Figure B2). This trend in F is consistent with the fishing mortality rates estimated in the previous assessment for summer flounder made through 1990 (NEFSC 1992).

Stock size in numbers in 1991-1992 (97 million in 1992) has increased from lowest time series value in 1989 (56 million), but remains below levels estimated for the early-mid 1980s (140 to 180 million) (Table B15). Spawning stock biomass on 1 November 1992 was estimated to be 15,000 mt, 2.5 times larger than the 1989 low (5,600 mt) (Table B15, Figure B3). Although spawning stock biomass is 67% of the 1983 peak (22,000 mt), only about 11% of the spawning stock is composed of fish aged 3 or older. In contrast, at the overfishing definition level of  $F_{max}$ = 0.23 (Figure B6), about 77% of the spawning

stock biomass would be expected to be of fish aged 3 and older, at a spawning stock biomass of 116,000 mt given average recruitment of 52 million fish.

Summer flounder spawn in the late autumn and into winter (peak spawning on November 1), and age 0 fish recruit to the fishery in the autumn of the following year. For example, summer flounder spawned in autumn 1987 (from the 1987 spawning stock biomass) recruit to the fishery in autumn 1988, and appear in VPA tables as age 0 fish in 1988. The abundance of the 1992 year-class at age 0 was estimated using catchability coefficients estimated for each age 0 index by ADAPT. This year class, as indicated by the available YOY indices, was estimated to be about 42 million fish, somewhat below the strength of the 1991 year class. The 1982 and 1983 year classes are the largest of the series, at 81 million and 95 million fish, respectively. The 1988 year class was the smallest of the series, at only 17 million fish (Table B15, Figure B3).<sup>1</sup>

Coefficients of variation for VPA estimates of stock size at ages 1, 2, and 3 were 26%, 36% and 69%, respectively. These estimates are less precise, but also less biased, than those obtained in previous assessments, due in part to reliance in the current analysis on only survey indices in the tuning procedure.

The distribution of bootstrapped F estimates was highly skewed (Figure B4), leading to high coefficients of variation for F on fully-recruited ages (149% for the fully-recruited F; coefficients of variation for F at age 0 and 1 were 25% and

Note that year classes are plotted for the year of the SSB that produced them, not the year in which they appear in VPA tables.

| Survey                        |      |      |      |       |       |       | Year Cl | 855   |              |      |       | Ъ.   |       |
|-------------------------------|------|------|------|-------|-------|-------|---------|-------|--------------|------|-------|------|-------|
|                               | 1980 | 1981 | 1982 | 1983  | 1984  | 1985  |         | 1987  | 1988         | 1989 | 1990  | 1991 | 1992  |
| NEFSC <sup>1</sup><br>(age 1) | 0.59 | 0.69 | 0.32 | 0.17  | 0.55  | 1.49  | 0.46    | 0.59  | 0.06         | 0.62 | 0.81  | 0.75 |       |
| NEFSC <sup>1</sup><br>(age 2) | 1.41 | 0.39 | 0.33 | 1.56  | 0.43  | 0.43  | 0.79    | 0.23  | 0.03         | 0.28 | 0.41  |      |       |
| MA²<br>(age 1)                | 0.40 | 0.38 | 0.24 | 0.04  | 0.14  | 0.97  | 0.62    | 0.15  | 0.00         | 0.25 | 0.03  | 0.27 |       |
| MA <sup>2</sup><br>(age 2)    | 1.42 | 1.30 | 0.07 | 1.19  | 0.53  | 0.58  | 0.97    | 0.34  | 0.02         | 0.05 | 0.32  |      | •     |
| CT <sup>s</sup><br>(age 1)    |      |      |      |       | 0.50  | 1.78  | 1.35    | 0.68  | 0.02         | 0.52 | 0.78  | 0.82 |       |
| RI <sup>4</sup><br>(age 1)    | 2.13 | 0.36 | 0.25 | 0.85  | 0.33  | 2.20  | 0.72    | 0.40  | 0.04         | 0.47 | 0.07  | 0.71 |       |
| RI <sup>5</sup><br>(age 0)    | 0.08 | 0.16 | 0.00 | 0.02  | 0.16  | 0.33  | 0.63    | 0.44  | 0.02         | 0.00 | 0.06  | 0.04 | 0.00  |
| MA <sup>6</sup><br>(age 0)    |      |      | 3.00 | 3.00  | 1.00  | 19.00 | 5.00    | 5.00  | <b>2.</b> 00 | 3.00 | 11.00 | 4.00 | 0.00  |
| DE <sup>7</sup><br>(age 0)    | 0.18 | 0.06 | 0.19 | 0.04  | 0.07  | 0.11  | 0.14    | 0.18  | 0.01         | 0.21 | 0.41  | 0.14 | 0.66  |
| MD <sup>8</sup><br>(Age 0)    | 4.71 | 4.56 | 1.61 | 12.46 | 17.72 | 7.31  | 26.24   | 10.72 | 0.46         | 1.90 | 3.87  | 5.96 |       |
| VIMS <sup>9</sup><br>(age 0)  | 4.89 | 4.16 | 2.47 | 1.96  | 0.84  | 0.72  | 0.81    | 0.52  | 0.35         | 0.50 | 1.12  | 1.24 | 0.44  |
| NC <sup>10</sup><br>(age 0)   |      |      |      |       |       |       |         | 13.25 | 1.70         | 4.77 | 4.56  | 5.92 | 10.97 |

 Table B14.
 Summary of recruitment indices from state, federal, and university research surveys, North Carolina to Massachusetts

<sup>1</sup> Number per tow (fitted delta stratified mean number per tow), NEFSC spring offshore trawl survey

<sup>2</sup> Number per tow (stratified mean number per tow), MADMF spring trawl survey

<sup>3</sup> Number per tow (delta mean number per tow), CTDEP trawl survey

<sup>4</sup> Number per tow (stratified mean number per tow), RIDFW fall trawl survey

Number per tow (stratified mean number per tow), RIDFW fail trawl survey - value of 1 was added to each observation in VPA tuning

<sup>3</sup> Total number, MADMF beach seine survey (fixed stations) - value of 1 was added to each observation in VPA tuning

<sup>7</sup> Number per tow, DEDFW 16 foot headrope trawl survey

Geometric mean number per tow, MDDNR Seaside trawl survey

Geometric mean number per tow, VIMS young fish survey (fixed stations)

<sup>10</sup> Number per tow (stratified mean number per tow), NCDMF Pamlico Sound trawl survey

34%, respectively). This distribution also resulted in a bootstrap mean (1.4) higher than the point estimate from the VPA (1.1). The bootstrap results showed a relatively large percent bias (29%) of the VPA estimate of fully recruited F (ages 2 to 5+) in 1992 relative to the bootstrap estimate. This may indicate errors in the catch at age matrix for summer flounder due to the inclusion of estimated, rather than directly reported, catch at age for the recreational fishery and

commercial discard, as well as imprecision in the survey indices used for tuning. Errors in the catch at age are usually considered to be very small relative to the error associated with the tuning indices, but in the case of summer flounder they may contribute significantly to the imprecision of the bootstrap estimates. Pending further investigation of the influence of other possible errors not accounted for in the ADAPT model on the estimation procedures, the estima-

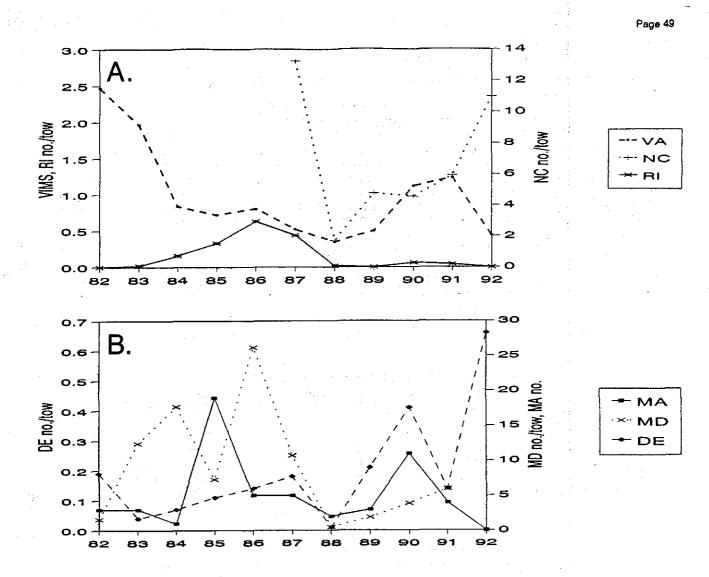



Figure B1. Trends in age 0 recruitment indices for summer flounder, 1982-1992.

tion of fully-recruited F from the VPA is considered to be the best point estimate of current F. Bootstrap results suggest there is a high probability (> 95%) that F in 1992 was above the 1993 management target ( $F_{st}$ ) of 0.53, and a 50% probability that F in 1992 was at least 1.0 (Figure B4).

The bootstrap estimate of spawning stock biomass was estimated with a coefficient of variation of 26%. This estimate is relatively precise, in spite of the imprecision of the estimates for individual ages, because it represents an aggregate of ages 0 to 5+. The bootstrap results indicate a high (> 95%) probability that spawning - stock biomass in 1992 was at least 10,000 mt, and a 50% probability that it was at least 15,000 mt, both substantial increases over the VPA estimate of 5,600 mt in 1989 (Figure B5).

The calculation of biological reference points for summer flounder using the Thompson and Bell (1934) model was detailed in the Report of the Eleventh SAW (NEFC 1990). Since partial recruitment pattern has remained stable (in spite of the addition of commercial discards in the catch at age matrix for 1989 to 1992), no revised analysis was performed. The 1990 analysis indicated  $F_{0.1} = 0.14$  and  $F_{max} = 0.23$ , Figure B6).

In summary, VPA results indicate that fishing mortality rates on summer flounder have declined since 1989, but remained above 1.0 during 1992, well above the levels of the MAFMC target for 1993 ( $F_{tgt} = 0.53$ ) and overfishing definition ( $F_{max} = 0.23$ ). Improved recruitment since 1988 has resulted in an increase in SSB, but this biomass continues to be concentrated in a few age classes.

Yield and stock size projections were made for 1993 to 1995. Recruitment at age 0 in 1993 to 1995 was assumed equal to the geometric mean of VPA estimates of recruitment during 1988 to  $1992 \pm$  one standard error. Stock size at age 1 in 1993 was assumed equal to the VPA point esti-

Page 50

Table B15. Summer flounder VPA tuned with survey indices only, one iterative re-weight.

|    |        |        |        | F      | ishing M  | ortality - | SAW16  |        |        |        |        |
|----|--------|--------|--------|--------|-----------|------------|--------|--------|--------|--------|--------|
|    | 1982   | 1983   | 1984   | 1985   | 1986      | 1987       | 1988   | 1989   | 1990   | 1991   | 1992   |
| 0  | 0.0742 | 0.1498 | 0.2535 | 0.0579 | 0.0862    | 0.0595     | 0.2553 | 0.0420 | 0.0637 | 0.0381 | 0.0393 |
| 1  | 0.6756 | 0.9141 | 0.7351 | 0.6831 | 0.6642    | 0.6431     | 1.0914 | 0.7953 | 0.6191 | 0.7532 | 0.4406 |
| 2  | 1.5166 | 0.7839 | 1.5203 | 1.3259 | 1.4017    | 1.3568     | 1.7947 | 1.6711 | 0.9995 | 1.2612 | 1.0753 |
| 3  | 1.1309 | 0.4743 | 0.8265 | 1.9634 | 1.6278    | 0.8652     | 1.7467 | 1.8587 | 1.3314 | 1.2388 | 1.0753 |
| 4  | 1.5754 | 0.7462 | 1.3602 | 1.4593 | 1.5445    | 1.3121     | 1.9502 | 1.8484 | 1.1192 | 1.3168 | 1.0753 |
| 5+ | 1.5754 | 0.7462 | 1.3602 | 1.4593 | 1.5445    | 1.3121     | 1.9502 | 1.8484 | 1.1192 | 1.3168 | 1.0753 |
|    |        |        | ·      |        | Average F | for ages   | 2 to 4 |        |        | ÷ .    |        |
|    | 1982   | 1983   | 1984   | 1985   | 1986      | 1987       | 1988   | 1989   | 1990   | 1991   | 1992   |

1.4076 0.6681 1.4582 1.5829 1.1780 1.8305 1.7927 1.0753 1.5247 1.11501.2723

| <b>Back-Calculate</b> | d Partial | Recruitment |
|-----------------------|-----------|-------------|
|-----------------------|-----------|-------------|

| 1982 | 1983                                 | 1984                                                                                                                              | 1985                                                 | 1986                                                 | 1987                                                                                                                                                                                                                                                                                                                                 | 1988                                                                                                                                                                                                                                                                                                                                                                                                  | 1989                                                                                                                                                                                                                                                                                                                                                                                               | 1990                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1991                                                                                                                                                                                 | 1992                                                                                                                                                                                                     |
|------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.05 | 0.16                                 | 0.17                                                                                                                              | 0.03                                                 | 0.05                                                 | 0.04                                                                                                                                                                                                                                                                                                                                 | 0.13                                                                                                                                                                                                                                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                               | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.03                                                                                                                                                                                 | 0.04                                                                                                                                                                                                     |
| 0.43 | 1.00                                 | 0.48                                                                                                                              | 0.35                                                 | 0.41                                                 | 0.47                                                                                                                                                                                                                                                                                                                                 | 0.56                                                                                                                                                                                                                                                                                                                                                                                                  | 0.43                                                                                                                                                                                                                                                                                                                                                                                               | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.57                                                                                                                                                                                 | 0.41                                                                                                                                                                                                     |
| 0.96 | 0.86                                 | 1.00                                                                                                                              | 0.68                                                 | 0.86                                                 | 1.00                                                                                                                                                                                                                                                                                                                                 | 0.92                                                                                                                                                                                                                                                                                                                                                                                                  | 0.90                                                                                                                                                                                                                                                                                                                                                                                               | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.96                                                                                                                                                                                 | 1.00                                                                                                                                                                                                     |
| 0.72 | 0.52                                 | 0.54                                                                                                                              | 1.00                                                 | 1.00                                                 | 0.64                                                                                                                                                                                                                                                                                                                                 | 0.90                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00                                                                                                                                                                                                                                                                                                                                                                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.94                                                                                                                                                                                 | 1.00                                                                                                                                                                                                     |
| 1.00 | 0.82                                 | 0.89                                                                                                                              | 0.74                                                 | 0.95                                                 | 0.97                                                                                                                                                                                                                                                                                                                                 | 1.00                                                                                                                                                                                                                                                                                                                                                                                                  | 0.99                                                                                                                                                                                                                                                                                                                                                                                               | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                 | 1.00                                                                                                                                                                                                     |
| 1.00 | 0.82                                 | 0.89                                                                                                                              | 0.74                                                 | 0.95                                                 | 0.97                                                                                                                                                                                                                                                                                                                                 | 1.00                                                                                                                                                                                                                                                                                                                                                                                                  | 0.99                                                                                                                                                                                                                                                                                                                                                                                               | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                 | 1.00                                                                                                                                                                                                     |
|      | 0.05<br>0.43<br>0.96<br>0.72<br>1.00 | 0.05         0.16           0.43         1.00           0.96         0.86           0.72         0.52           1.00         0.82 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.05         0.16         0.17         0.03         0.05           0.43         1.00         0.48         0.35         0.41           0.96         0.86         1.00         0.68         0.86           0.72         0.52         0.54         1.00         1.00           1.00         0.82         0.89         0.74         0.95 | 0.05         0.16         0.17         0.03         0.05         0.04           0.43         1.00         0.48         0.35         0.41         0.47           0.96         0.86         1.00         0.68         0.86         1.00           0.72         0.52         0.54         1.00         1.00         0.64           1.00         0.82         0.89         0.74         0.95         0.97 | 0.05       0.16       0.17       0.03       0.05       0.04       0.13         0.43       1.00       0.48       0.35       0.41       0.47       0.56         0.96       0.86       1.00       0.68       0.86       1.00       0.92         0.72       0.52       0.54       1.00       1.00       0.64       0.90         1.00       0.82       0.89       0.74       0.95       0.97       1.00 | 0.05       0.16       0.17       0.03       0.05       0.04       0.13       0.02         0.43       1.00       0.48       0.35       0.41       0.47       0.56       0.43         0.96       0.86       1.00       0.68       0.86       1.00       0.92       0.90         0.72       0.52       0.54       1.00       1.00       0.64       0.90       1.00         1.00       0.82       0.89       0.74       0.95       0.97       1.00       0.99 | 0.050.160.170.030.050.040.130.020.050.431.000.480.350.410.470.560.430.460.960.861.000.680.861.000.920.900.750.720.520.541.001.000.640.901.001.001.000.820.890.740.950.971.000.990.84 | 0.050.160.170.030.050.040.130.020.050.030.431.000.480.350.410.470.560.430.460.570.960.861.000.680.861.000.920.900.750.960.720.520.541.001.000.640.901.001.000.941.000.820.890.740.950.971.000.990.841.00 |

### Stock Numbers (Jan 1) in thousands - SAW 16

|    | 1982       | 1983       | 1984       | 1985       | 1986       | 1987       |
|----|------------|------------|------------|------------|------------|------------|
| 0  | 80737.786  | 95232.518  | 59506.721  | 47659.942  | 59054.722  | 45769.811  |
| 1  | 42910.904  | 61374.733  | 67121.695  | 37811.263  | 36824.620  | 44358.679  |
| 2  | 17456.868  | 17877.227  | 20144.535  | 26349.066  | 15635.632  | 15518.228  |
| 3  | 1328.326   | 3136.734   | 6683.115   | 3606.256   | 5729.087   | 3151.281   |
| 4  | 390,184    | 351.004    | 1598.155   | 2394.319   | 414.484    | 921.027    |
| 5+ | 290.356    | 302.619    | 532.925    | 640.327    | 1029.214   | 198.091    |
| 0+ | 143114.423 | 178274.834 | 155587.146 | 118461.173 | 118687.759 | 109917.117 |
|    | 1988       | 1989       | 1990       | 1991       | 1992       | 1993       |
| 0  | 16718.554  | 32704.943  | 36767.988  | 52973.262  | 41778.275  | 0.000      |
| 1  | 35307.875  | 10603.403  | 25675.355  | 28246.356  | 41750.275  | 32886.810  |
| 2  | 19091.520  | 9706.089   | 3919.173   | 11318.631  | 10889.139  | 22000.408  |
| 3  | 3271.415   | 2597.536   | 1494.278   | 1181.007   | 2625.405   | 3041.973   |
| 4  | 1086.164   | 466.986    | 331.485    | 323.098    | 280.155    | 733.429    |
| 5+ | 315.716    | 105.596    | 75.613     | 66.406     | 133.306    | 115,504    |
|    |            |            |            |            | ,          |            |

Table B15. Continued.

| Summaries for ages 2-5+ |           |           |           |           |           |  |  |
|-------------------------|-----------|-----------|-----------|-----------|-----------|--|--|
| 1982                    | 1983      | 1984      | 1985      | 1986      | 1987      |  |  |
| 19465.734               | 21667.584 | 28958.730 | 32989.968 | 22808.417 | 19788.627 |  |  |
| 1988                    | 1989      | 1990      | 1991      | 1992      | 1993      |  |  |
| 23764.815               | 12876.207 | 5820.549  | 12889.142 | 13928.005 | 25891.314 |  |  |

SSB at the Start of the Spawning Season (Nov 1) - males & females (MT)

|     | 1982      | 1983      | 1984      | 1985      | 1986                  | 1987      | 1988     |
|-----|-----------|-----------|-----------|-----------|-----------------------|-----------|----------|
| 0   | 6206.571  | 5901.057  | 3538.509  | 4123.002  | 4530.322              | 3351.300  | 1249.479 |
| 1   | 6497.816  | 7835.176  | 8873.751  | 5572.544  | 5875.310              | 7075.406  | 4073.458 |
| 2   | 2471.901  | 5588.414  | 2782.827  | 4090.109  | 2453.985              | 2485.944  | 2060.778 |
| 3   | 742.482   | 2324.582  | 3007.599  | 653.813   | 1474.072              | 1454.083  | 721.039  |
| 4   | 190.847   | 234.633   | 696.884   | 1076.366  | 174.393               | 507.754   | 325.804  |
| 5+  | 192.109   | 291.430   | 339.235   | 391.727   | 651.253               | 175.271   | 148.544  |
| 0+  | 16301.725 | 22175.291 | 19238.804 | 15907.562 | 15159.336             | 15049.758 | 8579.102 |
|     |           | 1989      | 1990      | 1991      | 1992                  | 2         |          |
|     | 0         | 2104.442  | 2739.064  | 3039.75   | 3 2707.3              | <u> </u>  |          |
|     | 1         | 1510.595  | 4046.532  | 3706.18   | 3 <sup>°</sup> 8089.€ | 610       |          |
| ê s | 2         | 1314.279  | 1042.666  | 2120.40   | 3 2570.8              | 323       |          |
| •   | · 3       | 489.679   | 492.956   | 417.53    | 6 1257.1              | 58        |          |
|     | . 4       | 128.285   | 173.115   | 173.58    | 8 190.0               | )46       |          |
|     | 5+        | 47.698    | 68.984    | 52.08     | 3 139.9               | 24        |          |
|     | 0+        | 5594.977  | 8563.316  | 9509.54   | 5 14954.8             | 861       | •        |

mate,  $\pm$  one standard error. Stock sizes at age 2 to 5+ were assumed equal to the VPA point estimates. These combinations of starting stock sizes for 1993 provided worst, average, and best case scenarios that bracket the range of uncertainty about the estimates of stock sizes at ages 0 and 1 in 1993.

Partial recruitment was based on the geometric mean of F at age for 1990 to 1992. Weight at age was based on geometric means of 1990 to 1992 values. Total catch was apportioned between landings and discard for 1993 to 1995 on the basis of the proportion of each in the total catch for 1990 to 1992. The projections assume that these patterns of discarding, which are currently due to the impact of minimum size regulations, will continue over the time span of the projections. Different discarding patterns that could develop during 1993 to 1995 due to trip and bag limits and fishery closures have not been evaluated. Fishing mortality in 1993 ( $F_{93}$ ) was assumed to be the F realized if the 1993 commercial and recreational landings quotas are taken, assuming the range of starting stock sizes for ages 0 and 1 in 1993. Fishing mortality in 1994-1995 was assumed to be the MAFMC target F for that period of 0.53 ( $F_{tar} = 0.53$ ).

If landings in 1993 equal quota amounts (9,400 mt), realized  $F_{93}$  could range from 0.46 to 0.52, given the uncertainty of stock sizes at ages 0 and 1 estimated for 1993 (Table B16; these stock size estimates depend on imprecise survey estimates of YOY abundance). With fishing mortality at the  $F_{1gt}$  = 0.53 level in 1994-1995, average levels of recruitment will result in landings increasing to 14,400 mt in 1994 and 16,200 mt in 1995. Assumption of the worst and best case scenarios for recruitment will result in landings about 20% below or 20 to 30% above the average case in 1994-1995. Landings projected for 1994 under average stock sizes for age 0 in 1993-1994



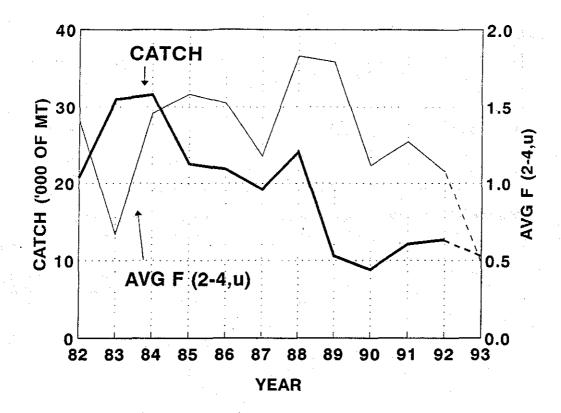



Figure B2. Trends in total catch. (landings and discard, thousands of metric tons)and fishing mortality (fully recruited F, ages 2 to 4, unweighted) for summer flounder, 1982-1992.

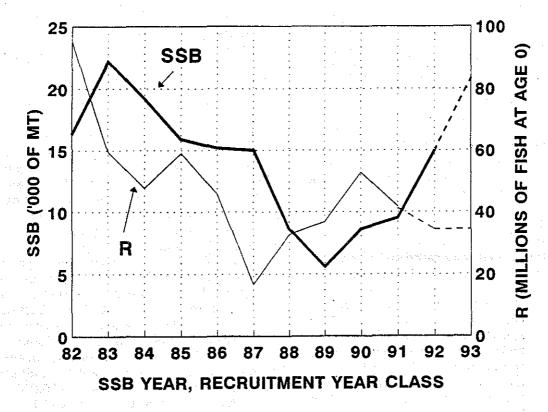



Figure B3. Trends in spawning stock biomass (SSB ages 0 to 5, thousands of metric tons) and recruitment (millions of fish at age 0) for summer flounder, 1982-1992. Note that because summer flounder spawn in late autumn, fish recruit to the fishery at age 0 the following autumn. For example, fish spawned in autumn 1987 recruit to the fishery in autumn 1988 and appear in VPA table at age 0 in 1988.

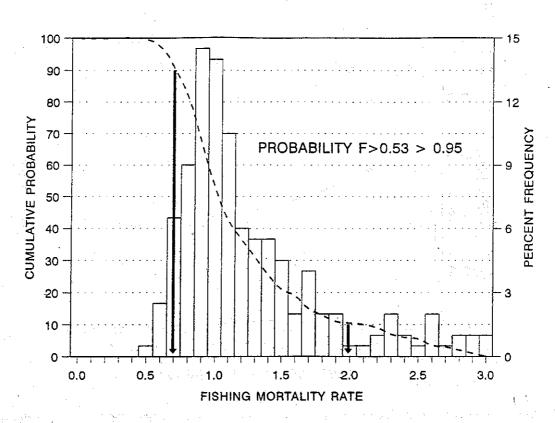
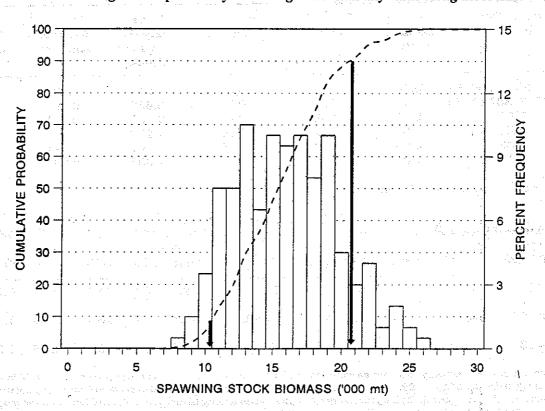
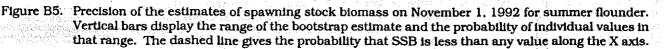





Figure B4. Precision of the estimates of fully recruited F (ages 2-4.u) in 1992 for summer flounder. Vertical bars display the range of the bootstrap estimate and the probability of individual values in that range. The dashed line gives the probability that F is greater than any value along the X axis.





1

Page 53

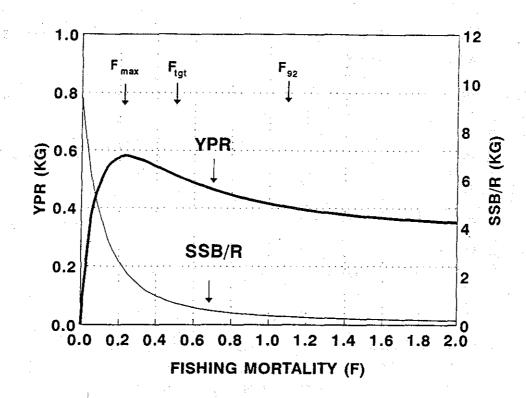



Figure B6. Yield per recruit (YPR) and spawning stock biomass per recruit (SSB/R) for summer flounder.

|    | Stock Size<br>in 1993 | Fishing<br>Mortality<br>Pattern | Proportion<br>Landed | Proportion<br>Mature | Mean<br>Weights<br>Spawning<br>Stock | Mean<br>Weights<br>Landings | Mean<br>Weights<br>Discards |
|----|-----------------------|---------------------------------|----------------------|----------------------|--------------------------------------|-----------------------------|-----------------------------|
| 0  | 22721,33858, 50453    | 0.04                            | 0.150                | 0.38                 | 0.211                                | 0.282                       | 0.192                       |
| 1  | 24492, 32887,41282    | 0.49                            | 0.580                | 0.72                 | 0.430                                | 0.491                       | 0.352                       |
| 2  | 22000                 | 0.91                            | 0.990                | 0.90                 | 0.751                                | 0.801                       | 0.604                       |
| 3  | 3042                  | 1.00                            | 1.000                | 1.00                 | 1.237                                | 1.237                       | 1.237                       |
| 4  | 733                   | 1.00                            | 1.000                | 1.00                 | 1.794                                | 1.794                       | 1.794                       |
| 5+ | 116                   | 1.00                            | 1.000                | 1.00                 | 2.835                                | 2.835                       | 2.835                       |

 Table B16. Input parameters and projection results for summer flounder, landings, discard, and spawning stock biomass (thousands of mt)<sup>1</sup>

 $F_{a3}$  = F realized if 1993 quota is taken

|                        | Stock size Stock size  |       |       | 1993  |      | · · ·                  |       | 1994  |      |       | 1995 | 5     |
|------------------------|------------------------|-------|-------|-------|------|------------------------|-------|-------|------|-------|------|-------|
| F <sub>93</sub>        | at age 0<br>in 1993-95 |       | Land. | Disc. | SSB  | F <sub>2994-96</sub>   | Land. | Disc. | SSB  | Land. | Disc | . SSB |
| 0.52                   | 22721                  | 24492 | 9.4   | 0.9   | 18.2 | F <sub>tgt</sub> =0.53 | 12.1  | 0.6   | 21.0 | 12.6  | 0.7  | 21.8  |
| 0.48<br>- <del>1</del> | 33858                  | 32887 | 9.4   | 1.1   | 21.1 | F <sub>ut</sub> =0.53  | 14.4  | 1.0   | 26.1 | 16.2  | 1.0  | 28.8  |
| 0.46                   | 50453                  | 41282 | 9.4   | 1.3   | 24.4 | F <sub>tgt</sub> =0.53 | 17.0  | 1.5   | 32.6 | 20.8  | 1.5  | 38.1  |

Starting stock sizes on 1 January 1993 are as estimated by VPA, except age 0 which is the geometric mean of VPA estimated numbers at age 0 (thousands) for 1988-92, + 1 standard error. Stock size at age 1 is also examined for a range of values (VPA point estimate + 1 standard error). Fishing mortality was apportioned among landings and discard based on the proportion of F associated with landings and discard at age during 1990-92. Mean weights at age (spawning stock, landings, and discards) are geometric means of 1990-92 values. Recruitment levels in 1994-95 are also estimated as the geometric mean of numbers at age 0 (thousands), + 1 standard error, during 1988-92.  $F_{as}$  is the F realized if fishery landings quotas, plus associated discard, are caught in 1993 (commercial landings = 5600 mt, recreational landings = 3800 mt).  $F_{as} = 0.53$  is the target designated by the MAFMC. Proportion of F, M before spawning = 0.83 (spawning peak at 1 November).

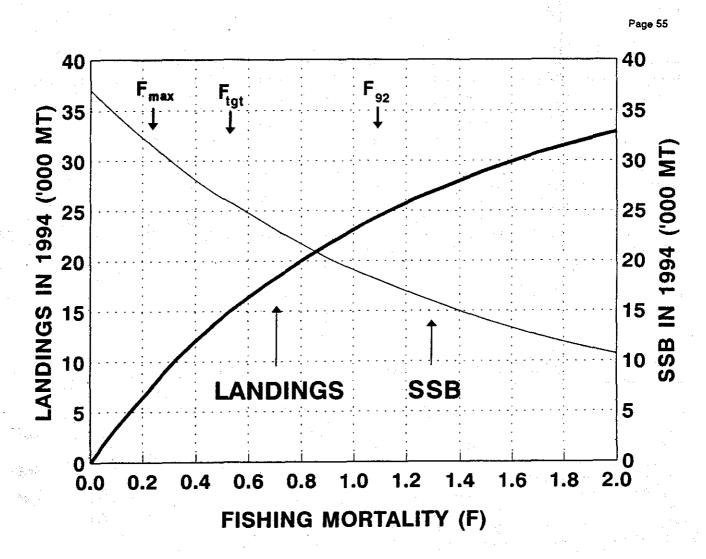



Figure B7. Predicted landings in 1994 and and spawning stock biomasses (SSB) in 1994 of summer flounder over a range of fishing mortalities in 1994, from F = 0 to F = 2.0.

| Table B17. Summary of NEFSC trawl survey data for summer flounder, spring | 1991 to winter 1993 surveys, |
|---------------------------------------------------------------------------|------------------------------|
| Great South Channel to Cape Hatteras (offshore strata 1-12, 61-76)        |                              |

| in Strata<br>(#)  | Stations<br>withFluke<br>(%) | Stratified<br>Mean<br>(kg/tow)                                                                        | CV                                                                                                                                                           | Stratified<br>Mean<br>(#/tow)                                                                                                                                                                                       | CV                                                                                                                                                                                                                                                                          | Mean<br>Length<br>(cm)                                                                                                                                                                                                                                                                                                             | Length<br>Range<br>(cm)                                                                                                                                                                                                                                                                                                                                                                   | Largest<br>Tow<br>(kg)                                                                                                                                                                                                                                                                                                                                                                                                                                | Largest<br>Tow<br>(#)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------|------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 96                | 33 3                         | 0.35                                                                                                  | 17 1                                                                                                                                                         | 1.08                                                                                                                                                                                                                | 170                                                                                                                                                                                                                                                                         | 30.4                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 200 - 200 - 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   |                              | 0.00                                                                                                  |                                                                                                                                                              |                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 95                | 10.5                         | 0.13                                                                                                  | 32.6                                                                                                                                                         | 0.39                                                                                                                                                                                                                | 34.0                                                                                                                                                                                                                                                                        | 30.2                                                                                                                                                                                                                                                                                                                               | 19-45                                                                                                                                                                                                                                                                                                                                                                                     | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   |                              |                                                                                                       | · .                                                                                                                                                          | · · ·                                                                                                                                                                                                               | 44<br>144<br>1                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 92                | 71.2                         | 5.96                                                                                                  | 15.5                                                                                                                                                         | 15.01                                                                                                                                                                                                               | 15.6                                                                                                                                                                                                                                                                        | 32.8                                                                                                                                                                                                                                                                                                                               | 19-71                                                                                                                                                                                                                                                                                                                                                                                     | 44.5                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| t de<br>Ne        |                              |                                                                                                       |                                                                                                                                                              |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                             | · .                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 92                | 38.0                         | 0.46                                                                                                  | 17.9                                                                                                                                                         | 1.19                                                                                                                                                                                                                | 17.5                                                                                                                                                                                                                                                                        | 32.0                                                                                                                                                                                                                                                                                                                               | 21-72                                                                                                                                                                                                                                                                                                                                                                                     | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| na an sainn<br>Sa |                              | ana taon na ang                                                                                       | •                                                                                                                                                            | . :                                                                                                                                                                                                                 | e final<br>G                                                                                                                                                                                                                                                                | e i constante de la constante d<br>La constante de la constante de                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 93                | 14.0                         | 0.38                                                                                                  | 42.0                                                                                                                                                         | 0.67                                                                                                                                                                                                                | 32.7                                                                                                                                                                                                                                                                        | 35.4                                                                                                                                                                                                                                                                                                                               | 25-66                                                                                                                                                                                                                                                                                                                                                                                     | 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 09                |                              | 6.00                                                                                                  | 10.1                                                                                                                                                         | 15.00                                                                                                                                                                                                               | 10.1                                                                                                                                                                                                                                                                        | 00.1                                                                                                                                                                                                                                                                                                                               | 00.00                                                                                                                                                                                                                                                                                                                                                                                     | 20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | 96<br>95<br>92               | 96       33.3         95       10.5         92       71.2         92       38.0         93       14.0 | 96       33.3       0.35         95       10.5       0.13         92       71.2       5.96         92       38.0       0.46         93       14.0       0.38 | 96       33.3       0.35       17.1         95       10.5       0.13       32.6         92       71.2       5.96       15.5         92       38.0       0.46       17.9         93       14.0       0.38       42.0 | 96       33.3       0.35       17.1       1.08         95       10.5       0.13       32.6       0.39         92       71.2       5.96       15.5       15.01         92       38.0       0.46       17.9       1.19         93       14.0       0.38       42.0       0.67 | 96       33.3       0.35       17.1       1.08       17.0         95       10.5       0.13       32.6       0.39       34.0         92       71.2       5.96       15.5       15.01       15.6         92       38.0       0.46       17.9       1.19       17.5         93       14.0       0.38       42.0       0.67       32.7 | 96       33.3       0.35       17.1       1.08       17.0       30.4         95       10.5       0.13       32.6       0.39       34.0       30.2         92       71.2       5.96       15.5       15.01       15.6       32.8         92       38.0       0.46       17.9       1.19       17.5       32.0         93       14.0       0.38       42.0       0.67       32.7       35.4 | 96       33.3       0.35       17.1       1.08       17.0       30.4       21-63         95       10.5       0.13       32.6       0.39       34.0       30.2       19-45         92       71.2       5.96       15.5       15.01       15.6       32.8       19-71         92       38.0       0.46       17.9       1.19       17.5       32.0       21-72         93       14.0       0.38       42.0       0.67       32.7       35.4       25-66 | 96       33.3       0.35       17.1       1.08       17.0       30.4       21-63       3.5         95       10.5       0.13       32.6       0.39       34.0       30.2       19-45       1.7         92       71.2       5.96       15.5       15.01       15.6       32.8       19-71       44.5         92       38.0       0.46       17.9       1.19       17.5       32.0       21-72       5.0         93       14.0       0.38       42.0       0.67       32.7       35.4       25-66       10.3 |

and age 1 in 1993 may be optimistic if the estimated stock sizes are too high. Adopting a landings quota for 1994 that is lower than the projected 14,400 mt would be a risk-averse strategy that will improve chances that the fishing mortality target is met in 1994 (Figure B7).

Spawning stock biomass will continue to increase under any of the three age 0 and 1 stock size scenarios for 1993-1995. However, even though projected spawning stock biomass levels in 1993-1995 Table B16, Figure B7) would be equal to or larger than the high levels observed in the early 1980s, the age structure of the stock remains truncated.

# EVALUATION OF NEFSC WINTER TRAWL SURVEY

A new series of NEFSC winter trawl surveys was started in February 1992 specifically to provide improved indices of abundance for flatfish, including summer flounder. This survey targets flatfish during the winter when the fish are concentrated offshore. A modified 36 Yankee trawl is used in the winter survey that differs from the standard trawl employed during the spring and autumn surveys in that 1) long trawl sweeps (wires) are added before the trawl doors, to better herd fish to the mouth of the net, and 2) the large rollers used on the standard gear are absent, and only a chain "tickler" and small spacing "cookies" are present on the footrope.

The survey is a promising source of coastwide data on relative abundance of summer flounder. Review of data from the first two years of the survey indicates that the performance of the survey is superior to that of the NEFSC spring and autumn bottom trawl surveys in terms of: higher percentage of stations at which summer flounderwere present; higher number and weight of summer flounder caught (minimum, mean, and maximum catches over survey); and lower coefficients of variation around stratified mean estimates of abundance (Table B17). Most fish have been taken in strata 61 to 76 (27 to 110 m; 15 to 60 fathoms), off the Delaware and Chesapeake Bays. Other concentrations of fish were found in strata 1 to 12, south of Long Island, New York and Rhode Island coasts, in slightly deeper waters. A few large summer flounder were captured along the southern flank of Georges Bank. The current gear, survey design, and spatial coverage require no revision at this point.

The performance of these survey indices as tuning indices for virtual population analysis cannot be assessed until next year because only two observations are available. Based on the characteristics mentioned above, however, the performance is likely to be superior to the NEFSC indices currently used for tuning. The length distribution sampled from fish available at the time of the survey indicates that fish age 1 and older are available to the survey. An improvement in estimation of relative abundance of age 1 fish may be realized, as the current combined suite of NEFSC and state indices provides imprecise estimates for this age group. Fishery-independent estimation of relative abundance of age 0 fish will continue to remain problematic in future assessments, however.

# EVALUATION OF NEFSC SEA SAMPLING PROGRAM

The 1989-1992 NEFSC sea sample data show that summer flounder landings and discard occur in many different components of the Southern New England (SNE) and Mid-Atlantic (MA) otter trawl fishery, as characterized by area and time strata (NAFO division and calendar quarter). In the current estimation procedure, the geometric mean discard rate (kilograms/day fished) from the sea sampling data is multiplied by the number of days fished recorded by the weighout sampling program, within division/ quarter strata, to estimate total discard. The basis for combining the two sampling programs to estimate discards rests with the good agreement between a) landings estimated from the sea sample landings rates and days fished recorded in the weighout data base (SS\_est), and b) landings reported directly in the weighouts (WO\_est).

Consideration of the variation in catch and discard rates in the different area/time strata has proven necessary to obtain what appear to be reasonable estimates of summer flounder discard during 1989-1992. Valuable information on summer flounder catch and discard rates is received from sea sample trips that do not target summer flounder. Current sea sampling effort (*i.e.*, number of trips) for summer flounder varies considerably across division and quarter. The relative error between landings estimated from data collected by the sea sampling and weighout systems was considered to evaluate the efficacy of the current allocation of sea sampling in the SNE/MA otter trawl fishery for summer flounder.

Relative error was defined as  $(SS_{y,d,q} - WO_{est_{y,d,q}})/WO_{est_{y,d,q}}$  where  $SS_{est_{y,d,q}}$  is the sea sampling estimate of landings for year y,

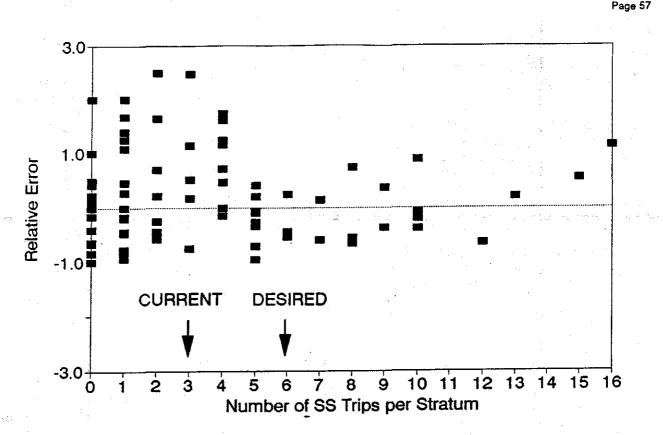



Figure B8. Relative error in the estimates of landings from sea sample and weighout data versus the number of sea sampling trips per year in division/quarter stratum. Sea sampling trips are those catching any summer flounder, split by division, in the Southern New England/Mid-Atlantic otter trawl fishery, 1989-1992.

division d, and quarter q and WO\_est  $_{y,d,q}$  is the associated weighout estimate. Standard sampling theory suggests that the accuracy of estimate should improve with the number of representative samples per cell. A plot of relative error versus the number of sea sampling trips per division/quarter stratum illustrates the expected pattern of decreasing error with increasing number of trips (Figure B8). When no sample trips were conducted in a given cell, estimates were imputed from appropriate adjacent cells. The analysis suggests that little reduction in relative error occurs at sampling intensities greater than 6 trips per cell, and that the overall relative error + of the discard estimates could be minimized by doubling the current sea sampling effort in the SNE/MA otter trawl fishery (from the 1989 to 1992 average of 78 trips per year, split by division, which caught any summer flounder, to 156 trips per year). A preliminary examination of a general linear model with year, division, quarter, and number of sea sampling trips as factors showed significant division and division by sea

sampling trip interaction effects, suggesting varying allocation of trips by division will be necessary to optimize sampling effort. Allocation of effort among cells should be investigated further.

In summary, an increase in number of sea sampled trips, up to double the amount currently in place, will improve the quality of discard estimation. Future advice on reallocation and optimization of sea sampling will need to be based on this year's experience and data, reflecting the reaction of the fishery to quota restrictions. This includes balancing needs for information on discarding in the exempted fishery, large-mesh fishery, and bycatch/discard fishery after quotas are met. Additional information on discard practices (e.g., prevalence of high-grading) could be collected under the present system. The state of North Carolina maintains a computerized form of data collected under the North Carolina sea sampling program. Analyses of these data have been rescheduled for later in this year, when participation by key investigators becomes possible.

## DISCUSSION AND CONCLUSIONS

# Recommendations for the Steering Committee

- Continue NEFSC winter trawl survey, as initial analyses suggest this series will provide more reliable and precise indices of abundance for use in mortality estimation and VPA tuning than currently used indices, *e.g.*, NEFSC spring and autumn survey time series.
- Continue/expand NEFSC sea sampling program collection of data for summer flounder, with special emphasis on:
  - a) Improved areal and temporal coverage;
  - b) Timely availability of sea sample data for use in assessments;
  - c) Continued sampling (after commercial fishery quotas are reached) of fisheries that take significant quantities of summer flounder; and
  - d) Adequate length and age sampling.
- Continue research to determine length and age frequency and discard mortality rates of both commercial and recreational fishery summer flounder discards.
- Continue review of available information on mesh selectivity of diamond and square mesh for summer flounder. This information will be important in the future to make accurate projections of landings, discard, and spawning stock biomass under various mesh size/ minimum length/quota combinations.

# Recommendations to the Southern Demersal Subcommittee

- Undertake research to determine if the maturity ogive used in the assessment (based on gross examination of ovaries) accurately reflects spawning potential of summer flounder (especially age 0 and 1 fish).
- Examine North Carolina sea sampling data for comparison of discard rates and total discard estimates with those from NEFSC sea sampling program.

- Investigate allocation of NEFSC sea sampling trips to optimize sampling effort.
- Develop a standardized index of abundance from NEFSC sea sampling data (catch = kept + discard) to provide a commercial fishery index that accounts for all removals by the fishery.
- In the next assessment, use the 80% commercial fishery discard mortality rate accepted in Amendment 2 of the FMP.
- Investigate the utility of alternative strata sets for the NEFSC spring trawl survey time series for summer flounder.
- Incorporate the impact of discards in future calculation of biological reference points.

## Major Sources of Uncertainty

- VPA estimates of stock size in 1993 are not precise (coefficients of variation at age were 26% for age 1, 36% for age 2, and 69% for age 3) because they depend on imprecise survey indices. Projected landings should be considered with caution.
- Indices of recruitment are not available for 1993, so estimates of age 0 abundance in 1993 are based on a geometric mean (± 1 standard error).
- Sea sampling length frequency data for 1992 and 1993 are unavailable, so 1989-1991 mean proportions at age, length at age, and weights at age have been used to characterize the 1992 commercial fishery discard. Effects of quota restrictions on discard patterns in 1993 cannot be incorporated into projections.
- North Carolina commercial landings at age for 1992 are based on provisional length frequency data (data for quarters 1 and 4 only) and may be revised somewhat in the future.
- Current assumptions accepted to allow characterization of age composition of recreational discard are based on data from a limited geographic area (Long Island, N.Y.).
- The present maturity ogive for summer flounder is based on gross examination of ovaries,

and may not accurately reflect the spawning potential of age 0 (and age 1) fish.

### **BEFERENCES**

- NEFC [Northeast Fisheries Science Center]. 1990. Report of the Eleventh Stock Assessment Workshop (11th SAW), Fall 1990. Woods Hole, MA: NOAA/NMFS/NEFC. NEFC Ref. Doc. 90-09.
- NEFSC INortheast Fisheries Science Centerl. 1992. Report of the Thirteenth Regional Stock

and the second second

a a series de la companya de la comp de la companya de la de la companya de la de la companya de la c

Assessment Workshop (13th SAW), Fall 1992. Woods Hole, MA: NOAA/NMFS/NEFSC. NEFSC Ref. Doc. 92-02.

- Thompson, W.F., and F.H. Bell. 1934. Biological statistics of the Pacific halibut fishery. 2. Effect of changes in intensity upon total yield and yield per unit of gear. Rep. Int. Fish. (Pacific halibut) Comm. 8.
- Wilk, S., W. G. Smith, D. E. Ralph and J. Sibunka. 1980. The population structure of summer flounder between New York and Florida based on linear discriminant analysis. Trans. Am. Fish. Soc. 109:265-271.

# C. ATLANTIC HERRING COASTAL STOCK COMPLEX ASSESSMENT

## **TERMS OF REFERENCE**

The following terms of reference were addressed:

- a. Describe the status of the coastal stock complex of Atlantic herring.
- b. Provide an age structured assessment of the coastal stock complex of Atlantic herring including estimates of fishing mortality on fully recruited ages, spawning stock biomass, and exploitable biomass at the beginning of 1992. Perform bootstrap replications of the assessment to characterize the variability of the estimates.
- c. Specify data deficiencies and research needs.

## INTRODUCTION

This assessment constitutes a revision of an earlier assessment on the same stock complex performed by the SARC in the fall of 1991 (NEFSC 1992). Following the advice of the SARC at that meeting, data from U.S. coastal fisheries in the Gulf of Maine were combined with data from south of Cape Cod, fixed gear catches from New Brunswick, and historical Georges Bank information, into a single catch-at-age matrix for the years 1967 to 1991. This approach is based on the fact that the virtual population analysis used to assess this resource is tuned using spring NMFS bottom trawl survey data, which is collected at a time of year when Atlantic herring that might otherwise be assigned to individual spawning stocks (e.g., Gulf of Maine, Georges Bank, as in earlier assessments), are mixed as a result of their migratory behavior and can not be separated. New Brunswick fixed-gear catches are not considered to be part of the Nova Scotian 4WX stock and are excluded from that assessment (Stephenson et al. 1992). Herring caught in Subarea 5 of the Bay of Fundy are transboundary in nature and have been included in the coastal stock complex assessment.

The basic methodology employed in the current assessment is the same as that used in 1991. The ADAPT methodology was used to tune the VPA. Two additional years of data (1991 and 1992) have been added for this analysis. In addition, some of the input parameters for this assessment have been changed, notably in the catch-at-age estimates and the bottom trawl survey catch rates used to tune the assessment.

## **COMMERCIAL LANDINGS**

The commercial fishery for Atlantic herring currently is active in coastal waters of the Gulf of Maine, principally in New Brunswick, Maine, and Massachusetts, with some minor landings in southern New England and the mid-Atlantic region (Table C1, Figure C1). Domestic landings currently are stable at 70,000 to 90,000 mt a year.

Historically, foreign catches on Georges Bank in the late 1960s and early 1970s far exceeded catches along the coast, but there has been no fishing on Georges since that stock collapsed in the mid-1970s. This is true despite the fact that herring began returning to the bank to spawn in 1986 (Stephenson and Kornfield 1990). Larval survey results and reports of large concentrations of adult herring on the bank in the fall of recent years, suggest that at least some recovery of this stock has occurred. Fishing on Georges Bank is currently not being pursued by any U.S. vessels because of the limited market demand for herring. Canada, however, will permit a 5000 mt exploratory fishery for herring on Georges Bank in the fall of 1993.

Atlantic herring juveniles are utilized in the Maine and New Brunswick canning industry, (age 2), whereas adults are used for bait, primarily in the lobster fishery, throughout New England and along the U.S. East Coast. They are caught primarily with purse seines and trawls, although a small quantity is still taken in Maine in weirs and stop seines. The summer fishery (May to October) takes place primarily in Maine and New Brunswick while fishing in Massachusetts and south of Cape Cod is primarily from November to April.

Two recent developments in the fishery are Internal Waters Processing (IWP) operations and the incidental taking of Atlantic herring in the Atlantic mackerel joint venture (JV) operations (with mid-water trawls) off the mid-Atlantic states

| Table C1. | Landings (metric tons) of Atlantic herring from fisheries in Georges Bank (GB), Gulf of Maine (GOM), |
|-----------|------------------------------------------------------------------------------------------------------|
|           | Southern New England(SNE), Middle Atlantic (MAT) and New Brunswick, Canada (NB) areas.               |
|           | Includes landings for Internal Waters Processing operations.                                         |

|        | YEAR | GB     | GOM <sup>1</sup> | SNE <sup>2</sup> | MAT <sup>s</sup> | NB <sup>4</sup> | TOTAL  |  |
|--------|------|--------|------------------|------------------|------------------|-----------------|--------|--|
|        | 1960 | 0      | 60237            | 261              | 152              | 34304           | 94954  |  |
|        | 1961 | 67655  | 25548            | 197              | 101              | 8054            | 101555 |  |
|        | 1962 | 152242 | 69980            | 131              | - 98             | 20698           | 243149 |  |
|        | 1963 | 97968  | 67736            | 195              | 78               | 29366           | 195343 |  |
|        | 1964 | 131438 | 27226            | 200              | 148              | 29432           | 188444 |  |
| . 1    | 1965 | 42882  | 34104            | 303              | 208              | 3346            | 80843  |  |
|        | 1966 | 142704 | 29167            | 3185             | 176              | 35805           | 211037 |  |
|        | 1967 | 218743 | 30191            | 247              | 524              | 30032           | 279737 |  |
|        | 1968 | 373598 | 40928            | 245              | 122              | 33145           | 448038 |  |
|        | 1969 | 310758 | 28336            | · <b>2104</b>    | 193              | 26539           | 367930 |  |
|        | 1970 | 247294 | 28070            | 1037             | 189              | 15840           | 292430 |  |
|        | 1971 | 267347 | 32631            | 1318             | 1151             | 12660           | 315107 |  |
|        | 1972 | 174190 | 37444            | 2310             | 409              | 32699           | 247052 |  |
|        | 1973 | 202335 | 21767            | 4249             | 233              | 19935           | 248519 |  |
|        | 1974 | 149525 | 29491            | 2918             | 200              | 20602           | 202736 |  |
|        | 1975 | 146096 | 31938            | 4119             | 117              | 30819           | 213089 |  |
|        | 1976 | 43502  | 49887            | 191              | 57               | 29206           | 122843 |  |
|        | 1977 | 2157   | 50348            | 301              | 33               | 23487           | 76326  |  |
|        | 1978 | 2059   | 48734            | 1730             | 46               | 38842           | 91411  |  |
|        | 1979 | 1270   | 63492            | 1341             | 31               | 37828           | 103962 |  |
| N.     | 1980 | 1700   | 82244            | 1200             | 21               | 13525           | 98690  |  |
|        | 1981 | 672    | 64324            | 749              | 16               | 19080           | 84841  |  |
| - 41-1 | 1982 | 1378   | 32157            | 1394             | 20               | 25963           | 60912  |  |
| ÷.,    | 1983 | 53     | 24824            | 72               | 21               | 11383           | 36353  |  |
|        | 1984 | 58     | 33958            | 79               | 10               | 8698            | 42803  |  |
|        | 1985 | 316    | 27157            | 196              | 13               | 27863           | 55545  |  |
|        | 1986 | 586    | 27942            | 632              | 20               | 27883           | 57063  |  |
|        | 1987 | 11     | 39179            | 376              | 87               | 27320           | 66973  |  |
|        | 1988 |        | 39382            | 1307             | 365              | 33421           | 74475  |  |
|        | 1989 |        | 52656            | 269              | 39               | 44112           | 97076  |  |
| 1.1    | 1990 |        | 62150            | 761              | 48               | 38778           | 101737 |  |
|        | 1991 |        | 50261            | 4007             | 402              | 24576           | 79246  |  |
|        | 1992 |        | 54411            | 716              | 4564             | 31968           | 91659  |  |

<sup>1</sup> Maine, New Hampshire, Massachusetts

<sup>a</sup> Rhode Island, Connecticut, New York

<sup>3</sup> New Jersey, Delaware, Maryland, Virginia

\* NB landings for fixed gear only

in the winter. The abundance of herring during the winter in the mid-Atlantic region in recent years is a result of the recovery of the Georges Bank and Nantucket Shoals spawning stock(s). The IWP landings (U.S. fishermen supplying foreign processing ships anchored in state internal waters) began in Massachusetts in 1985, but have only become significant during the last four years (1989 to 1992) in Massachusetts, Maine, Rhode Island, New York, and New Jersey. Discards of Atlantic herring reported by observers aboard foreign processing ships operating off New Jersey are available for 1985 to 1991 (Table C2). There were no mackerel joint ventures in 1992.

## AGE COMPOSITION

المريق المنافرة المعاور والأخراطي أوردت

The estimated catches-at-age in numbers for the entire stock complex for 1967 to 1992 are given in Table C3. The 1967 to 1988 data were completely revised to correct for an error in the FORTRAN version of BIOSTAT (fish that were aged and measured were being double-counted) and are therefore not the same as used in the 1991 assessment. The effect of this error was minimal, however; the maximum percent change in the estimated numbers-at-age in the entire time series was only 2.6%.

The coastal U.S. catch-at-age estimates for 1989 and 1990 were recalculated to account for

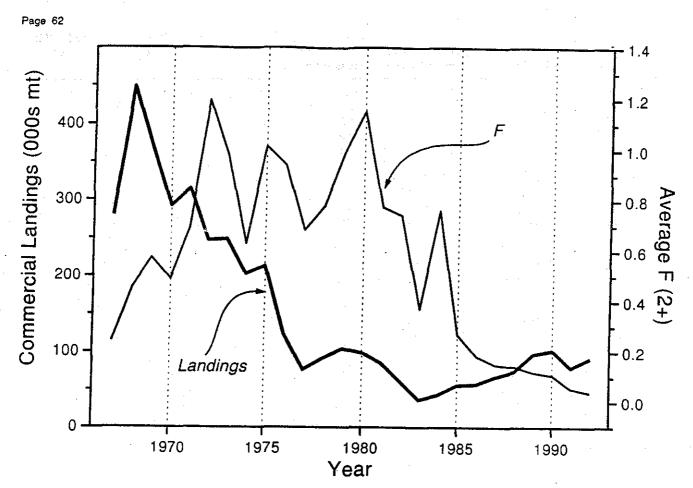



Figure C1. Trends in nominal catch (thousands of metric tons) and fishing mortality (average F. age 2+) for Atlantic herring. 1967-1992.

the same double-counting error as well as some other problems that became obvious in the process of reprogramming BIOSTAT in D-BASE and estimating catch-at-age for 1991 and 1992. These were:

- 1. Ages were sometimes missing for some length categories in the samples, especially for larger fish collected in Gloucester. Since all the age-length keys are based on fish that have been frozen and thawed prior to length measurement, and the Gloucester fish are measured when still fresh, a 3% shrinkage factor was applied to all the Gloucester length measurements. Remaining missing ages were assigned according to the most likely age composition for any given centimeter length category.
- 2. Sample data for some offshore catches in the central Maine coastal area in 1990 and 1991 had been assigned to the Massachusetts mobile gear category, whereas the catches had been included in the central Maine coast category. This problem was corrected. In the process, three new off-

| Table C2. | Atlantic herring discards (metric tons) in |
|-----------|--------------------------------------------|
|           | the mackerel joint venture fishery in the  |
|           | Mid-Atlantic                               |

| Year | Discarded Catch<br>(mt) |
|------|-------------------------|
| 1985 | 16.8                    |
| 1986 | 3.8                     |
| 1987 | 132.9                   |
| 1988 | 300.5                   |
| 1989 | 742.4                   |
| 1990 | 1395.0                  |
| 1991 | 896.5                   |
| 1992 | 0.0                     |

shore Maine subareas were created in BIOSTAT to complement the Jeffreys Ledge subarea (which is combined with Massachusetts Bay for the purpose of calculating catches-at-age).

3. In the process of rerunning BIOSTAT for 1989 to 1992, new decisions were made regarding the assignment of sample data from adjoining areas or months (for missing

| Age                                | 1967                                                                                                             | 1968                                                                                                             | 1969                                     | 1970                                                                                                           | 1971                                     | 1972                                   | 1973              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| . 1 .                              | 136.550                                                                                                          | 15.490                                                                                                           | 71.460                                   | 5.990                                                                                                          | 154.660                                  | 8.250                                  | 37.420            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                                  | 424.090                                                                                                          | 1392.430                                                                                                         | 581.790                                  |                                                                                                                | 233.400                                  | 1001.030                               |                   | a sea fa a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3                                  | 228.610                                                                                                          | 277.180                                                                                                          | 397.600                                  |                                                                                                                | 410.430                                  | 64.730                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                                  | 208.760                                                                                                          | 180.550                                                                                                          | 234.320                                  |                                                                                                                | 327.900                                  | 165.16                                 | 294.010           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                                  | 130.530                                                                                                          | 397.240                                                                                                          | 300.730                                  |                                                                                                                | 333.260                                  | 261.730                                |                   | ter ta da ser a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                                  | 270.320                                                                                                          | 266.920                                                                                                          | 309.600                                  | 151.770                                                                                                        | 221.840                                  | 209.470                                |                   | ++ ÷ ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7                                  | 389.360                                                                                                          | 464.730                                                                                                          | 216.850                                  |                                                                                                                | 135.930                                  | 126.160                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                                  | 50.180                                                                                                           | 356.110                                                                                                          |                                          |                                                                                                                | 69.380                                   | 55.570                                 | 19.600            | and the set of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                    |                                                                                                                  | 25.110                                                                                                           | 215.250                                  | 79.170<br>50.750                                                                                               |                                          |                                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9                                  | 11.550                                                                                                           |                                                                                                                  | 130.010                                  |                                                                                                                | 26.390                                   | 32.220                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10                                 | 10.390                                                                                                           | 9.100                                                                                                            | 29.330                                   | 32.410                                                                                                         | 30.400                                   | 23.710                                 | 5.550             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11                                 | 0.170                                                                                                            | 0.650                                                                                                            | 1.030                                    | 2.880                                                                                                          | 3.530                                    | 1.650                                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1+.                                | 1860.510                                                                                                         | 3385.510                                                                                                         | 2487.970                                 | 1924.460                                                                                                       | 1947.120                                 | 1949.680                               | 2174.760          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    |                                                                                                                  |                                                                                                                  | ł                                        |                                                                                                                |                                          |                                        |                   | a de la construction de                                                                                                                                                                                                                                              |
|                                    | 1974                                                                                                             | 1975                                                                                                             | 1976                                     | 1977                                                                                                           | 1978                                     | 1979                                   | 1980              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 1                                | 34.620                                                                                                           | 45.140                                                                                                           | 75.380                                   | 597.180                                                                                                        | 269.800                                  | 6.560                                  | 343.150           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                                  | 429.270                                                                                                          | 645.850                                                                                                          | 531.250                                  | 579.310                                                                                                        | 1222.480                                 | 1174.180                               | 230.050           | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3                                  | 146.900                                                                                                          | 117.730                                                                                                          | 249.300                                  | 83.330                                                                                                         | 138,480                                  | 422.540                                | 363.170           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                                  | 750.410                                                                                                          | 112.110                                                                                                          | 47.340                                   | 70.560                                                                                                         | 26.070                                   | 57.740                                 | 185.080           | ante a su contra de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5                                  | 78.650                                                                                                           | 610.360                                                                                                          | 49.390                                   | 20.950                                                                                                         | 42.910                                   | 16.080                                 | 21.770            | a ser a s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                                  | 18.410                                                                                                           | 46.320                                                                                                           | 208.890                                  | 18.450                                                                                                         | 6.180                                    | 17.080                                 | 6.160             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                                  | 9.110                                                                                                            | 17.420                                                                                                           | 10.400                                   | 49.670                                                                                                         | 8.260                                    | 6.150                                  | 8.210             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                                  | 5.590                                                                                                            | 9.390                                                                                                            | 3.350                                    | 2.630                                                                                                          | 32.180                                   | 4.530                                  | 0.850             | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9                                  | 3.080                                                                                                            |                                                                                                                  |                                          |                                                                                                                |                                          |                                        |                   | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10 .                               |                                                                                                                  | 5.580                                                                                                            | 2.550                                    | 0.670                                                                                                          | 1.100                                    | 7.090                                  | 0.680             | 1. Sec. 1. Sec |
|                                    | 0.470                                                                                                            | 0.710                                                                                                            | 0.670                                    | 0.390                                                                                                          | 0.650                                    | 0.340                                  | 4.490             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11                                 | 0.390                                                                                                            | 0.440                                                                                                            | 0.200                                    | 0.320                                                                                                          | 0.220                                    | 0.001                                  | 0.120             | i in the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1+                                 | 1476.900                                                                                                         | 1611.050                                                                                                         | 1178.720                                 | 1423.460                                                                                                       | 1748.330                                 | 1712.291                               | 1163.730          | 1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                    | 1981                                                                                                             | 1982                                                                                                             | 1983                                     | 1984                                                                                                           | 1985                                     | 1986                                   | 1987              | 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1                                  | 61.710                                                                                                           | 52.700                                                                                                           | 32.810                                   | 18.880                                                                                                         | 30.200                                   | 40.680                                 | 50.990            | 79.280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2                                  | 1169.190                                                                                                         | 669.470                                                                                                          | 267.470                                  | 185.040                                                                                                        | 562.750                                  | 247.460                                | 223.780           | 502.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3                                  | 34.360                                                                                                           | 110.140                                                                                                          | 59.100                                   | 133.100                                                                                                        | 84.320                                   | 225.150                                | 134.810           | 110.940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4                                  | 68.100                                                                                                           | 6.720                                                                                                            | 28.900                                   | 40.340                                                                                                         | 51.070                                   | 48.500                                 | 180.510           | 62.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5                                  | 46.890                                                                                                           | 30.270                                                                                                           | 1.250                                    | 28.480                                                                                                         | 27.170                                   | 38.000                                 | 44.860            | 126.610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6                                  | 4.860                                                                                                            | 19.300                                                                                                           |                                          |                                                                                                                |                                          |                                        |                   | 34.860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                    |                                                                                                                  |                                                                                                                  | 6.620                                    | 2.140                                                                                                          | 13.550                                   | 16.250                                 | 18.430            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                                  | 1.360                                                                                                            | 2.180                                                                                                            | 7.360                                    | 4.320                                                                                                          | 1.180                                    | 7.710                                  | 5.690             | 9.140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8                                  | 1.200                                                                                                            | 0.420                                                                                                            | 0.330                                    | 1.720                                                                                                          | 2.390                                    | 0.360                                  | 2.350             | 2.180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9                                  | 0.070                                                                                                            | 0.820                                                                                                            | 0.190                                    | 0.520                                                                                                          | 0.720                                    | 0.460                                  | 0.210             | 1.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10                                 | 0.140                                                                                                            | 0.120                                                                                                            | 0.130                                    | 0.120                                                                                                          | 0.001                                    | 0.090                                  | 0.320             | 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11                                 | 0.810                                                                                                            | 0.150                                                                                                            | 0.001                                    | 0.040                                                                                                          | 0.070                                    | 0,350                                  | 0.010             | 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1+                                 | 1388.690                                                                                                         | 892.290                                                                                                          | 404.161                                  | 414.700                                                                                                        | 773.421                                  | 625.010                                | 661.960           | 928.660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                    | 1989                                                                                                             | 1990                                                                                                             | 1991                                     | 1992                                                                                                           | ·                                        | 18                                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    |                                                                                                                  | 1300                                                                                                             |                                          |                                                                                                                |                                          |                                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                  | 27.060                                                                                                           | 12.590                                                                                                           | 5.540                                    | 0.800                                                                                                          |                                          |                                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                                  | 460.210                                                                                                          | 571.050                                                                                                          | 461.780                                  | 561.020                                                                                                        |                                          |                                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                                  | 166.030                                                                                                          | 220.560                                                                                                          | 180.440                                  | 234.920                                                                                                        |                                          |                                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                                  | 108.150                                                                                                          | 89.360                                                                                                           | 101.700                                  | 102.120                                                                                                        |                                          |                                        |                   | a she iya sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5                                  | 81.340                                                                                                           | 37.990                                                                                                           | 65.300                                   | 85.590                                                                                                         |                                          |                                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                                  | 180.690                                                                                                          | 43.170                                                                                                           | 33.270                                   | 48.470                                                                                                         |                                          |                                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7                                  | 29.270                                                                                                           | 82.480                                                                                                           | 23.290                                   | 24.630                                                                                                         | · · · · · · ·                            |                                        |                   | Nggaladistr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8                                  | 8.380                                                                                                            | 28.530                                                                                                           | 21.440                                   | 15.480                                                                                                         |                                          |                                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9                                  | 2.200                                                                                                            | 14.710                                                                                                           | 9.750                                    | 8.350                                                                                                          |                                          | $(1,1,\dots,1) \in \mathbb{R}^{n}$     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10                                 | 0.150                                                                                                            | 5.690                                                                                                            | 4.960                                    | 2.720                                                                                                          | · .                                      |                                        | arte di stra dese | 가슴을 가 가슴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11 11                              | 0.150                                                                                                            | 0.310                                                                                                            | 0.150                                    |                                                                                                                |                                          |                                        |                   | an the grant the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                    | 1063.730                                                                                                         | 1106.440                                                                                                         | 907.620                                  | 0.040<br>1084.140                                                                                              | an da an                                 | a serve dire.<br>Biographicatione dire |                   | na na setto di setto<br>Na setto di s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| la ≢ta si.<br>Tuli t <sub>ab</sub> | 10001100                                                                                                         | 1100.440                                                                                                         | 501.020                                  | 1084.140                                                                                                       | 1997 - 199<br>1                          |                                        |                   | and a second second<br>Second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 119 B.C.                           |                                                                                                                  | and the second | ADA STREET                               | and a second                                                                                                   |                                          | and a straight of the                  | الجنبية المداد    | na na nativita a factoria.<br>Nativita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                    | and the second |                                                                                                                  |                                          | and a second |                                          |                                        | 化化学 化化学 化化学学 化合金  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Alter 19                           | a tra                                                                                                            |                                                                                                                  |                                          |                                                                                                                | and the second second                    |                                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    | ener<br>Glandererererererererererererererererererer                                                              | an an an<br>An Anna Anna Anna Anna Anna<br>Anna Anna                                                             | an a |                                                                                                                | an a |                                        |                   | a na serie da serie<br>En esta da serie da s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Table C3. Combined catch at age (millions of fish) of Atlantic herring (1967-1992) for coastal United States, Georges Bank, and New Brunswick fixed gear fisheries

. . .

sample data). In a few cases, small monthly catches (usually less than 50 mt) had to be omitted from the analysis because no appropriate substitute sample data were available.

For the first time, the catch composition of all significant domestic commercial landings south of Cape Cod, IWP landings, and reported mackerel JV discards were incorporated into the 1989 to 1992 catch-at-age estimates. Discards and Massachusetts IWP landings prior to 1989 have not been added to the catch-at-age matrix. Herring length frequency data, available from the mackerel JV and from New York and New Jersey IWPs, were converted to age frequencies based on age-length data from spring NMFS bottom trawl surveys. The IWP operations south of Cape Cod and the mackerel JVs take place in the first four months of the year when very little growth occurs, thus we felt justified in using the spring trawl survey age-length data to estimate the age composition of these catches. Missing mean weights for each centimeter length group (*i.e.*, for fish in the samples that were not weighed) were derived from a calculated length-weight regression formula for herring collected in Massachusetts Bay during January-April 1991.

### Mean Weights-at-Age

Estimated mean weights-at-age for the whole year (mid-yr) are given in Table C4. Mid-year mean weights are calculated by dividing the derived tonnage at each age by the estimated numbers of fish at that age. The reduction in mean weights since 1987 continues to be reflected in the 1992 data; this reduced weight-atage reflects a reduced growth rate that may be due to the rapidly increasing size of the stock in recent years.

## STOCK ABUNDANCE INDICES

### **Research Vessel Survey Indices**

\* Age-disaggregated NMFS spring bottom trawl survey abundance indices are given in Table C5 for 1968 to 1992. These estimates have been corrected for differences in the fishing power of the two survey vessels (NEFSC 1992), but have not been transformed or smoothed. Previous catch rate-at-age calculations failed to account for the fact that length measurements made at sea were in fork length, not total length. The net effect of converting fork length to total lengths was to "move" fish from the younger age groups into the older age groups, *i.e.*, to increase the catch rates for the older fish and decrease catch rates of the younger fish.

Stock abundance in 1992 was high at all ages, continuing the upward trend in the data from the extremely low values observed in the early 1980s (Table C5). The number of age 2 and 3 fish was especially high in 1992, indicating possible strong recruitment from the 1989 and 1990 year classes.

### Larval Survey Indices

Larval surveys conducted by the NMFS since 1971 continue to provide a valuable indicator of spawning stock abundance on Georges Bank and Nantucket Shoals. The 1991 results are high (Table C5), as they were in 1989 and 1990, indicating that there may be more spawning in recent years than at the beginning of the time series. Results for the last three years are very consistent. These data were related to age 4+ spawning stock biomass in the VPA as an independent tuning index for determining fishing mortality rates in 1992.

### Natural Mortality

The rate of instantaneous natural mortality (M) for the Atlantic herring coastal stock complex was assumed to be 0.20.

## ASSESSMENT METHODOLOGY

### **Virtual Population Analysis**

To tune the VPA for the Atlantic herring coastal complex for 1967 to 1992, ADAPT (Gavaris 1988, Conser and Powers 1990) was used. Spring bottom trawl indices for ages 2 to 6 and a larval index from NEFSC surveys for 1971 to 1991 were used in the tuning process (Table C5).

VPA estimates of stock numbers at ages 4, 5, and 6+ were "tuned" against bottom trawl survey abundance indices for these same ages for the purpose of estimating terminal fishing mortality rates. Stock sizes on ages 4 to 6 were estimated with the procedure because of relatively high CVs on younger ages. Weighted and unweighted

| Tab                                                   | le C4.                                                                                                                 | Weight a                                                                                                               | at age (m                                                                                                              | id-year) i                                                                                                                     | n kilogra                                                                                       | ms for co                                                                                                           | astal U.S                                                                                                              | 5. fisherie                                                                                                          | s, 1967-                                                                                                               | 1992                                                                                                     |                                                                                                                        |                                                                                                                        |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Age                                                   | 1967                                                                                                                   | 1968                                                                                                                   | 1969                                                                                                                   | 1970                                                                                                                           | 1971                                                                                            | 1972                                                                                                                | 1973                                                                                                                   | 1974                                                                                                                 | 1975                                                                                                                   | 1976                                                                                                     | 1977                                                                                                                   | 1978                                                                                                                   |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | $\begin{array}{c} 0.005\\ 0.029\\ 0.078\\ 0.118\\ 0.162\\ 0.257\\ 0.275\\ 0.342\\ 0.288\\ 0.292\\ 0.313\end{array}$    | $\begin{array}{c} 0.007\\ 0.025\\ 0.059\\ 0.142\\ 0.194\\ 0.215\\ 0.245\\ 0.260\\ 0.273\\ 0.292\\ 0.313\end{array}$    | 0.010<br>0.039<br>0.079<br>0.051<br>0.252<br>0.270<br>0.320<br>0.296<br>0.273<br>0.292<br>0.313                        | $\begin{array}{c} 0.021 \\ 0.063 \\ 0.106 \\ 0.167 \\ 0.210 \\ 0.240 \\ 0.304 \\ 0.309 \\ 0.311 \\ 0.292 \\ 0.313 \end{array}$ | 0.019<br>0.049<br>0.115<br>0.180<br>0.234<br>0.327<br>0.294<br>0.329<br>0.331<br>0.313          | $\begin{array}{c} 0.035\\ 0.051\\ 0.120\\ 0.187\\ 0.234\\ 0.273\\ 0.314\\ 0.357\\ 0.273\\ 0.292\\ 0.313\end{array}$ | 0.016<br>0.054<br>0.108<br>0.233<br>0.257<br>0.293<br>0.325<br>0.325<br>0.338<br>0.263<br>0.324                        | 0.017<br>0.053<br>0.108<br>0.204<br>0.232<br>0.247<br>0.272<br>0.286<br>0.293<br>0.305                               | 0.023<br>0.051<br>0.096<br>0.169<br>0.230<br>0.230<br>0.274<br>0.274<br>0.302<br>0.293<br>0.314                        | 0.018<br>0.042<br>0.114<br>0.179<br>0.206<br>0.211<br>0.260<br>0.282<br>0.319<br>0.334<br>0.399          | 0.016<br>0.042<br>0.103<br>0.161<br>0.189<br>0.219<br>0.228<br>0.260<br>0.304<br>0.294<br>0.281                        | $\begin{array}{c} 0.013\\ 0.040\\ 0.120\\ 0.186\\ 0.226\\ 0.273\\ 0.285\\ 0.317\\ 0.349\\ 0.345\\ \end{array}$         |
|                                                       | 1979                                                                                                                   | 1980                                                                                                                   | 1981                                                                                                                   | 1982                                                                                                                           | 1983                                                                                            | 1984                                                                                                                | 1985                                                                                                                   | 1986                                                                                                                 | 1987                                                                                                                   | 1988                                                                                                     | 1989                                                                                                                   | 1990                                                                                                                   |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | 0.008<br>0.032<br>0.089<br>0.198<br>0.255<br>0.281<br>0.182<br>0.325<br>0.332<br>0.313<br>0.313                        | $\begin{array}{c} 0.015\\ 0.041\\ 0.103\\ 0.169\\ 0.268\\ 0.319\\ 0.344\\ 0.241\\ 0.306\\ 0.391\\ 0.372\\ \end{array}$ | $\begin{array}{c} 0.012\\ 0.045\\ 0.114\\ 0.190\\ 0.232\\ 0.293\\ 0.316\\ 0.342\\ 0.470\\ 0.304\\ 0.373\\ \end{array}$ | 0.020<br>0.049<br>0.130<br>0.194<br>0.250<br>0.267<br>0.300<br>0.322<br>0.342<br>0.342<br>0.313                                | 0.022<br>0.055<br>0.138<br>0.216<br>0.223<br>0.310<br>0.348<br>0.368<br>0.390<br>0.397<br>0.313 | $\begin{array}{c} 0.019\\ 0.051\\ 0.133\\ 0.182\\ 0.227\\ 0.260\\ 0.305\\ 0.343\\ 0.314\\ 0.402\\ 0.528\end{array}$ | $\begin{array}{c} 0.013\\ 0.049\\ 0.139\\ 0.181\\ 0.203\\ 0.229\\ 0.281\\ 0.273\\ 0.289\\ 0.292\\ 0.313\\ \end{array}$ | $\begin{array}{c} 0.021\\ 0.053\\ 0.116\\ 0.166\\ 0.215\\ 0.230\\ 0.251\\ 0.260\\ 0.299\\ 0.292\\ 0.313 \end{array}$ | $\begin{array}{c} 0.018\\ 0.044\\ 0.093\\ 0.141\\ 0.178\\ 0.218\\ 0.233\\ 0.227\\ 0.251\\ 0.265\\ 0.320\\ \end{array}$ | 0.009<br>0.034<br>0.090<br>0.129<br>0.164<br>0.187<br>0.228<br>0.238<br>0.238<br>0.254<br>0.292<br>0.247 | $\begin{array}{c} 0.005\\ 0.046\\ 0.101\\ 0.136\\ 0.168\\ 0.196\\ 0.235\\ 0.248\\ 0.244\\ 0.313\\ 0.300\\ \end{array}$ | $\begin{array}{c} 0.005\\ 0.044\\ 0.099\\ 0.148\\ 0.183\\ 0.194\\ 0.207\\ 0.229\\ 0.246\\ 0.258\\ 0.300\\ \end{array}$ |
|                                                       | 1991                                                                                                                   | 1992                                                                                                                   |                                                                                                                        | 94<br>1                                                                                                                        | •                                                                                               |                                                                                                                     |                                                                                                                        |                                                                                                                      | Ч                                                                                                                      |                                                                                                          | • .                                                                                                                    | •<br>•                                                                                                                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11 | $\begin{array}{c} 0.005\\ 0.053\\ 0.087\\ 0.133\\ 0.166\\ 0.193\\ 0.214\\ 0.225\\ 0.229\\ 0.243\\ 0.300\\ \end{array}$ | $\begin{array}{c} 0.005\\ 0.047\\ 0.090\\ 0.129\\ 0.154\\ 0.179\\ 0.202\\ 0.219\\ 0.226\\ 0.269\\ 0.300\\ \end{array}$ | ν.                                                                                                                     |                                                                                                                                |                                                                                                 |                                                                                                                     |                                                                                                                        |                                                                                                                      |                                                                                                                        |                                                                                                          |                                                                                                                        |                                                                                                                        |

ADAPT runs were completed and diagnostics were examined for both runs.

## Yield and Spawning Stock Biomass per Recruit

Yield and spawning stock biomass per recruit analyses were performed using methods developed by Thompson and Bell (1934). The selection of the exploitation pattern used in the analysis (Age 1=0.011, Age 2=0.943, Age 3+=1.000) was influenced by the results of a separable VPA run for ages 1 to 8 herring over the years 1987 to 1992 assuming a reference age of 3. Catch and stock weights were assumed to be equal and were estimated as simple averages of August to September 1988 to 1992 sample data. The proportion of mature females used in the analysis was obtained from examination of samples.

## ASSESSMENT RESULTS

## Virtual Population Analysis

Estimates of numbers at age and spawning stock biomass for the Atlantic herring stock complex were computed using the ADAPT VPA tuning method (Conser and Powers 1990; Mohn

Page 65

Table C5.

5. Spring bottom trawl survey (BTS) number per tow of Atlantic herring (1968-1992) by age and weighted mean of larval herring abundance (1971-1991, number per 10 m<sup>2</sup>) for Massachusetts Bay, Georges Bank, and Nantucket Shoals areas

|    |        | -      |        |         |         |         |          |         |       |       |
|----|--------|--------|--------|---------|---------|---------|----------|---------|-------|-------|
|    | Index  |        | 1968   | 1969    | 1970    | ) 197   | 1 1972   | 1973    | 3 19  | 974   |
| 1. | BTS-Ag | ge 2   | 1.470  | 0.110   | 3.640   | 0.24    | 0 0.560  | 0.12    | ) 0.  | 100   |
| 2. | BTS-Ag | je 3   | 8.210  | 1.250   | 1.390   | 0.44    | 0.890    | 2.240   | 0.    | 110   |
| З. | BTS-Ag |        | 3.250  | 0.470   | 0.980   | 0.48    | 0 0.450  | 3.320   | ) 4.  | 180   |
| 4. | BTS-Ag | ge 5   | 3.370  | 0.950   | 0.790   | 0.20    | 0 0.540  | 0.540   | ) 0.1 | 720   |
| 5. | BTS-Ag | ge 6   | 2.720  | 1.640   | 0.370   | 0.21    | 0 0.300  | 1.090   | ) 0.  | 180   |
| 6. | Larval |        | · -    | · -     | ~ •     | 89.70   | 0 81.400 | 355.200 | 304.  | 500   |
|    | 1975   | 1976   | 1977   | 1978    | 1979    | 1980    | 1981     | 1982    | 1983  | 1984  |
| 1  | 0.050  | 0.860  | 0.170  | 0.200   | 2.530   | 0.120   | 0.020    | 0.390   | 0.190 | 1.830 |
| 2  | 0.150  | 0.260  | 0.150  | 1.900   | 0.390   | 1.400   | 0.020    | 0.060   | 0.030 | 0.380 |
| 3  | 0.110  | 0.060  | 0.370  | 0.310   | 1.310   | 3.550   | 0.490    | 0.050   | 0.070 | 0.290 |
| 4  | 1.190  | 0.110  | 0.130  | 0.280   | 0.780   | 0.660   | 1.290    | 0.060   | 0.010 | 0.130 |
| 5  | 0.110  | 0.300  | 0.070  | 0.040   | 0.230   | 0.080   | 0.180    | 0.040   | 0.050 | 0.010 |
| 6  | 55.900 | 2.200  | 19.200 | 2.400   | 6.000   | 1.900   | 29.700   | 18.200  | 3.700 | 2.300 |
|    | 1985   | 1986   | 1987   | 1988    | 1989    | 1990    | 1991     | 1992    |       |       |
| 1  | 1.970  | 1.380  | 0.850  | 2.470   | 1.320   | 2.310   | 3.920    | 7.000   | ÷.,   |       |
| 2  | 0.900  | 25.430 | 1.370  | 2.210   | 1.110   | 1.830   | 3.320    | 15.140  |       |       |
| 3  | 0.400  | 3.190  | 0.900  | 1.670   | 0.420   | 1.760   | 8.660    | 4.630   |       |       |
| 4  | 0.450  | 1.100  | 3.330  | 4.920   | 1.470   | 1.720   | 4.190    | 5.390   |       |       |
| 5  | 0.100  | 0.530  | 0.700  | 1.600   | 3.080   | 1.010   | 2.000    | 2.180   |       |       |
| 6  | 95.400 | 60.400 | 31.400 | 184.900 | 454.300 | 394.100 | 354.200  | -       |       |       |

and Cook 1993) with six research survey indices. The consensus ADAPT run applied inverse-variance weighting to the tuning indices. The unweighted run produced similar, but less precise estimates of stock sizes and biomasses.

Fishing mortality (F) estimates at age for the whole time series as derived from the VPA are given in Table C6 and Figure C1. Fishing mortality for fully-recruited (age 2+) Atlantic herring increased from 0.24 in 1967 to 1.20 in 1972, and remained at high levels throughout the 1970s Fishing mortality has decreased substantially throughout the 1980s to low levels in the early 1990s. In 1992, the fully-recruited fishing mortality was 0.04.

Estimates of precision and bias of fishing mortality\_rates from ADAPT are given in Table C7.

Bootstrapped estimates of the fully-recruited fishing mortality ( $F_{92}$ ) in 1992 indicated that 80% confidence intervals for  $F_{92}$  were 0.026 to 0.054 (Figure C2). In comparison,  $F_{0.1}$ ,  $F_{max}$ , and  $F_{20}$ were 0.19, 0.34, and 0.29. Thus, fishing mortality in 1992 was certainly below standard biological reference points. Furthermore, VPA results indicate that the fishing mortality rate for the Atlantic herring stock complex has been below  $\rm F_{max}$  and  $\rm F_{20}$  since 1985.

Spawning stock biomass (SSB) for the Atlantic herring stock complex decreased from 839,000 mt in 1967 to less than an average of 40,000 mt during 1976 to 1982 (Table C8, Figure C3). Since 1982, Atlantic herring SSB has increased at an exponential rate.

In 1992, the point estimate of Atlantic herring SSB (SSB<sub>92</sub>) was 1.25 million mt and 80% confidence intervals for SSB<sub>92</sub> were 930,000 mt to 2.0 million mt (Table C8, Figure C4). Thus, Atlantic herring spawning stock biomass in 1992 was likely to be more than 1.0 million mt, and has improved greatly from the very low levels observed from 1976 to 1982.

Recruitment (numbers of age 2 fish) for the Atlantic herring stock complex has been moderate (less than 2 billion) since 1983, following 12 years of low recruitment. However, VPA results indicate that the 1989 and 1990 year classes were the largest on record (19 and 21 billion) (Table C9, Figure C3). The size of these year

|          | 10F 1: | 907-1992 |        |        |        |        |        |        |        |
|----------|--------|----------|--------|--------|--------|--------|--------|--------|--------|
| Age      | 1967   | 1968     | 1969   | 1970   | 1971   | 1972   | 1973   | 1974   | 1975   |
| 1        | 0.0288 | 0.0065   | 0.0385 | 0.0047 | 0.0224 | 0.0077 | 0.0419 |        | 0.0499 |
| 2        | 0.1802 | 0.4516   | 0.3531 | 0.4032 | 0.2537 | 0.1973 | 0.5166 | 0.9140 | 0.7694 |
| 3        | 0.1493 | 0.1715   | 0.2220 | 0.1850 | 0.7001 | 0.1029 | 0.4252 | 0.4239 | 0.6942 |
| 4        | 0.1344 | 0.1688   | 0.2147 | 0.4721 | 0.5594 | 0.6899 | 0.9198 | 0.4671 | 0.6775 |
| 5        | 0.1307 | 0.4068   | 0.4687 | 0.4616 | 0.6899 | 1.3123 | 0.8320 | 0.6792 | 0.8954 |
| 6        | 0.2185 | 0.4289   | 0.6498 | 0.4597 | 0.7693 | 1.4383 | 0.9156 | 0.4775 | 1.2020 |
| 7        | 0.4070 | 0.7193   | 0.7582 | 0.6206 | 1.0173 | 1.6325 | 1.1330 | 0.4341 | 1.2287 |
| 8        | 0.3471 | 0.8235   | 0.9055 | 0.7049 | 0.8418 | 2.1341 | 1.5195 | 0.5062 | 1.1531 |
| 9        | 0.3656 | 0.2925   | 0.8442 | 0.5521 | 0.5392 | 1.3823 | 1.5885 | 1.1558 | 1.6268 |
| 10       | 0.2544 | 0.5529   | 0.6630 | 0.5172 | 0.7746 | 1.5334 | 0.9883 | 0.6166 | 0.9490 |
| 11 .     | 0.2544 | 0.5529   | 0.6630 | 0.5172 | 0.7746 | 1.5334 | 0.9883 | 0.6166 | 0.9490 |
|          | 1976   | 1977     | 1978   | 1979   | 1980   | 1981   | 1982   | 1983   | 1984   |
| t        | 0.0667 | 0.2027   | 0.1140 | 0.0178 | 0.1752 | 0.0395 | 0.0335 | 0.0244 | 0.0053 |
| 2        | 1.3301 | 1.0436   | 0.8250 | 1.0266 | 1.4673 | 1.5940 | 0.7646 | 0.2373 | 0.1864 |
| 3        | 0.7900 | 0.7612   | 0.7702 | 0.7791 | 1.1295 | 0.9387 | 0.6005 | 0.1322 | 0.1777 |
| 1        | 0.6777 | 0.5379   | 0.5726 | 0.8937 | 0.9972 | 0.6533 | 0.4650 | 0.3062 | 0.1253 |
| 5        | 0.7369 | 0.7422   | 0.7532 | 0.8728 | 1.0938 | 0.7536 | 0.6940 | 0.1444 | 0.5642 |
| 3        | 0.9298 | 0.6872   | 0.5050 | 0.7905 | 1.0556 | 0.7796 | 0.8334 | 0.3114 | 0.3929 |
| 7        | 1.0162 | 0.5897   | 0.7773 | 1.6024 | 1.2280 | 0.7038 | 1.0406 | 0.9315 | 0.3442 |
| 3        | 0.8386 | 0.7863   | 1.0100 | 1.5490 | 1.1067 | 0.5639 | 0.4866 | 0.4133 | 0.5781 |
| <b>)</b> | 1.2698 | 0.3868   | 0.9431 | 0.6345 | 1.1382 | 0.2277 | 1.0004 | 0.4251 | 4.2029 |
| 0        | 0.9150 | 0.6506   | 0.8200 | 0.8963 | 1.1562 | 0.7623 | 0.7665 | 0.4049 | 0.5254 |
| 1        | 0.9150 | 0.6506   | 0.8200 | 0.8963 | 1.1562 | 0.7623 | 0.7665 | 0.4049 | 0.5254 |
|          | 1985   | 1986     | 1987   | 1988   | 1989   | 1990   | 1991   | 1992   |        |
| L.       | 0.0114 | 0.0136   | 0.0109 | 0.0160 | 0.0051 | 0.0007 | 0.0003 | 0.0004 |        |
|          | 0.2136 | 0.1214   | 0.0968 | 0.1420 | 0.1215 | 0.1424 | 0.0328 | 0.0365 |        |
| 3        | 0.1211 | 0.1237   | 0.0898 | 0.0635 | 0.0636 | 0.0787 | 0.0609 | 0.0210 |        |
| Í.       | 0.0956 | 0.0948   | 0.1381 | 0.0543 | 0.0813 | 0.0441 | 0.0003 | 0.0210 |        |
| 5        | 0.1164 | 0.0956   | 0.1192 | 0.1356 | 0.0935 | 0.0370 | 0.0411 | 0.0509 |        |
| ,<br>3 . | 0.5807 | 0.0945   | 0.0612 | 0.1280 | 0.2919 | 0.0657 | 0.0412 | 0.0388 |        |
|          | 0.3918 | 0.7923   | 0.0433 | 0.0390 | 0.1508 | 0.2095 | 0.0412 | 0.0388 |        |
| ;        | 0.3252 | 0.1923   | 0.5976 | 0.0209 | 0.0456 | 0.2095 | 0.0458 | 0.0388 |        |
| )        | 0.5252 | 0.0947   | 0.1685 | 0.6144 | 0.0456 | 0.2155 | 0.1058 | 0.0388 |        |
| 0        | 0.1681 | 0.1074   | 0.0882 | 0.1129 | 0.1554 | 0.0883 | 0.1058 | 0.0388 |        |
| 1        | 0.1681 | 0.1074   | 0.0882 | 0.1129 | 0.1554 | 0.0883 | 0.0468 | 0.0388 |        |
| •        | 0.1001 | 0.1074   | 0.0002 | 0.1128 | 0.1004 | 0.0000 | 0.0400 | 0.0000 |        |
|          |        |          |        |        |        |        |        |        |        |

Table C6. Fishing mortality for coastal United States, Georges Bank, and New Brunswick fixed gear fisheries for 1967-1992

classes is dependent on the results of 2 and 1 research survey cruises, respectively, and thus are thought to be of low precision.

## Yield and Spawning Stock Biomass per \*Recruit

The results of the Y/R and SSB/R analysis are given in Table C10, with reference points of  $F_{0.1}$ =0.187,  $F_{20}$ =0.290, and  $F_{max}$ =0.342 (Figure C5).

# SOURCES OF UNCERTAINTY

Stock structure, and in particular, the response of individual spawning components to intense localized fishing pressure, remains a potential source of uncertainty and concern for this assessment. Efforts to characterize the stock structure of this complex and its response to spatial patterns of fishing effort are encouraged.

Discards of herring from the mackerel fishery were included in this assessment. However,

### Page .68

| Age                                  | ADAPT Estimate                                                                                           | Booststrap Mea                                                                               | n Bootstr                                                           | ap St. Error C                                                                                                       | V for ADAPT COLN                                                     |
|--------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 1                                    | 4.263E-4                                                                                                 | 4.731E-4                                                                                     | 1.                                                                  | 306E-4                                                                                                               | 0.31                                                                 |
| 2                                    | 3.655E-2                                                                                                 | 4.055E-2                                                                                     | 1.                                                                  | 120E-2                                                                                                               | 0.31                                                                 |
| 3                                    | 2.089E-2                                                                                                 | 2.542E-2                                                                                     | 1.                                                                  | 808E-2                                                                                                               | 0.87                                                                 |
| 4                                    | 4.439E-2                                                                                                 | 5.012E-2                                                                                     | 2.                                                                  | 885E-2                                                                                                               | 0.65                                                                 |
| 5                                    | 5.099E-2                                                                                                 | 5.347E-2                                                                                     | 2.                                                                  | 667E-2                                                                                                               | 0.52                                                                 |
| 6                                    | 3.876E-2                                                                                                 | 4.300E-2                                                                                     | 1.                                                                  | 188E-2                                                                                                               | 0.31                                                                 |
| 7                                    | 3.876E-2                                                                                                 | 4.300E-2                                                                                     | 1.                                                                  | 188E-2                                                                                                               | 0.31                                                                 |
| 8                                    | 3.876E-2                                                                                                 | 4.300E-2                                                                                     | 1.                                                                  | 188E-2                                                                                                               | 0.31                                                                 |
| 9                                    | 3.876E-2                                                                                                 | 4.300E-2                                                                                     | 1.                                                                  | 188E-2                                                                                                               | 0.31                                                                 |
| 10                                   | 3.876E-2                                                                                                 | 4.300E-2                                                                                     | 1.                                                                  | 188E-2                                                                                                               | 0.31                                                                 |
| 11                                   | 3.876E-2                                                                                                 | 4.300E-2                                                                                     | • 1.                                                                | 188E-2                                                                                                               | 0.31                                                                 |
| Full                                 | 3.876E-2                                                                                                 | 4.300E-2                                                                                     | 1.                                                                  | 188E-2                                                                                                               | 0.31                                                                 |
| Age                                  | Bias Estimate                                                                                            | Bias Std. Error                                                                              | Precent Blas                                                        |                                                                                                                      | CV for Corrected                                                     |
|                                      |                                                                                                          |                                                                                              | •                                                                   | Corrected for Bi                                                                                                     | as Estimate                                                          |
| 1                                    | 4.673E-5                                                                                                 | 9.237E-6                                                                                     | 10.96                                                               | 3.796E-4                                                                                                             | 0.34                                                                 |
| 2                                    | 4.673E-5<br>4.006E-3                                                                                     | 9.237E-6<br>7.919E-4                                                                         | 10.96<br>10.96                                                      |                                                                                                                      |                                                                      |
|                                      |                                                                                                          |                                                                                              |                                                                     | 3.796E-4                                                                                                             | 0.34                                                                 |
| 2<br>3<br>4                          | 4.006E-3                                                                                                 | 7.919E-4                                                                                     | 10.96                                                               | 3.796E-4<br>3.254E-2                                                                                                 | 0.34<br>0.34                                                         |
| 2<br>3<br>4<br>5                     | 4.006E-3<br>4.522E-3                                                                                     | 7.919E-4<br>1.278E-3                                                                         | 10.96<br>21.64                                                      | 3.796E-4<br>3.254E-2<br>1.637E-2                                                                                     | 0.34<br>0.34<br>1.10                                                 |
| 2<br>3<br>4<br>5<br>6                | 4.006E-3<br>4.522E-3<br>5.738E-3                                                                         | 7.919E-4<br>1.278E-3<br>2.040E-3                                                             | 10.96<br>21.64<br>12.93                                             | 3.796E-4<br>3.254E-2<br>1.637E-2<br>3.865E-2                                                                         | 0.34<br>0.34<br>1.10<br>0.75                                         |
| 2<br>3<br>4<br>5<br>6<br>7           | 4.006E-3<br>4.522E-3<br>5.738E-3<br>2.486E-3                                                             | 7.919E-4<br>1.278E-3<br>2.040E-3<br>1.886E-3                                                 | 10.96<br>21.64<br>12.93<br>4.88                                     | 3.796E-4<br>3.254E-2<br>1.637E-2<br>3.865E-2<br>4.850E-2                                                             | 0.34<br>0.34<br>1.10<br>0.75<br>0.55                                 |
| 2<br>3<br>4<br>5<br>6                | 4.006E-3<br>4.522E-3<br>5.738E-3<br>2.486E-3<br>4.249E-3                                                 | 7.919E-4<br>1.278E-3<br>2.040E-3<br>1.886E-3<br>8.398E-4                                     | 10.96<br>21.64<br>12.93<br>4.88<br>10.96                            | 3.796E-4<br>3.254E-2<br>1.637E-2<br>3.865E-2<br>4.850E-2<br>3.451E-2                                                 | 0.34<br>0.34<br>1.10<br>0.75<br>0.55<br>0.34                         |
| 2<br>3<br>4<br>5<br>6<br>7           | 4.006E-3<br>4.522E-3<br>5.738E-3<br>2.486E-3<br>4.249E-3<br>4.249E-3                                     | 7.919E-4<br>1.278E-3<br>2.040E-3<br>1.886E-3<br>8.398E-4<br>8.398E-4                         | 10.96<br>21.64<br>12.93<br>4.88<br>10.96<br>10.96                   | 3.796E-4<br>3.254E-2<br>1.637E-2<br>3.865E-2<br>4.850E-2<br>3.451E-2<br>3.451E-2                                     | 0.34<br>0.34<br>1.10<br>0.75<br>0.55<br>0.34<br>0.34                 |
| 2<br>3<br>4<br>5<br>6<br>7<br>8      | 4.006E-3<br>4.522E-3<br>5.738E-3<br>2.486E-3<br>4.249E-3<br>4.249E-3<br>4.249E-3<br>4.249E-3             | 7.919E-4<br>1.278E-3<br>2.040E-3<br>1.886E-3<br>8.398E-4<br>8.398E-4<br>8.398E-4             | 10.96<br>21.64<br>12.93<br>4.88<br>10.96<br>10.96<br>10.96          | 3.796E-4<br>3.254E-2<br>1.637E-2<br>3.865E-2<br>4.850E-2<br>3.451E-2<br>3.451E-2<br>3.451E-2<br>3.451E-2             | 0.34<br>0.34<br>1.10<br>0.75<br>0.55<br>0.34<br>0.34<br>0.34         |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 4.006E-3<br>4.522E-3<br>5.738E-3<br>2.486E-3<br>4.249E-3<br>4.249E-3<br>4.249E-3<br>4.249E-3<br>4.249E-3 | 7.919E-4<br>1.278E-3<br>2.040E-3<br>1.886E-3<br>8.398E-4<br>8.398E-4<br>8.398E-4<br>8.398E-4 | 10.96<br>21.64<br>12.93<br>4.88<br>10.96<br>10.96<br>10.96<br>10.96 | 3.796E-4<br>3.254E-2<br>1.637E-2<br>3.865E-2<br>4.850E-2<br>3.451E-2<br>3.451E-2<br>3.451E-2<br>3.451E-2<br>3.451E-2 | 0.34<br>0.34<br>1.10<br>0.75<br>0.55<br>0.34<br>0.34<br>0.34<br>0.34 |

 Table C7.
 Precision and bias estimates of age-specific instantaneous fishing mortality rates (F) in 1992 for

 Atlantic herring<sup>1</sup>
 1992 for

<sup>1</sup> ADAPT estimates from final consensus run. Standard error, coefficients of variation (CV) and bias estimates are derived from 200 bootstrap replications.

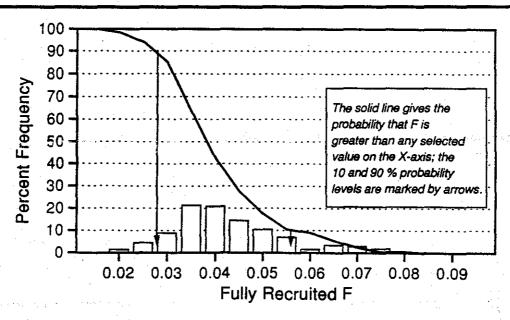


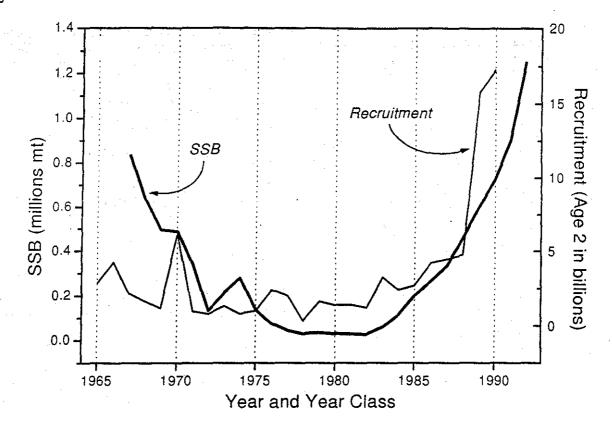

Figure C2. Precision of the estimates of fishing mortality for Atlantic herring derived from a statistical procedure known as bootstrap. The vertical bars give the range and probability of individual values within that range.

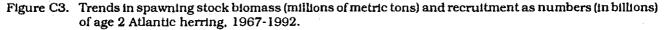
| Page | 69 |
|------|----|
|------|----|

|        | 1974    | 1973    | 1972    | 1971    | 1970    | 1969    | 1968    | 1967    | Age       |
|--------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|
|        | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 1         |
|        | 0.000   | 0.000   | , 0.000 | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 2         |
|        | 19.895  | 138.332 | 21.610  | 22.206  | 46.693  | 43.965  | 6.074   | 2.515   | 3         |
|        | 226.330 | 39.222  | 34.327  | 84.935  | 144.254 | 49.080  | 121.304 | 115.606 | 4         |
|        | 18.602  | 16.162  | 29.793  | 88.725  | 113.191 | 135.563 | 161.672 | 148.821 | 5         |
|        | 7.480   | 9.711   | 24.252  | 72.207  | 66.600  | 102.219 | 113.455 | 285.746 | 6         |
|        | 4.389   | 6.359   | 13.767  | 27.764  | 50.290  | 70.331  | 123.125 | 224.489 | 7         |
|        | 2.491   | 2.482   | 4.319   |         | 27.113  | 51.591  | 84.635  | 42.911  | 8         |
|        | 0.514   | 0.597   | 3.962   | 13.225  | 23.391  | 31.440  | 20.649  | 7.855   | 9         |
|        | 0.179   | 1.054   | 2.659   | 9.932   | 15.126  | 10.222  | 3.931   | 10.618  | 10        |
|        | 0.153   | 0.078   | 0.193   | 1.075   | 1.426   | 0.380   | 0.298   | 0.185   | 11        |
|        | 280.033 | 213.997 | 134.882 | 338.020 | 488.083 | 494.791 | 635.142 | 838.745 | 1+        |
| 198    | 1982    | 1981    | 1980    | 1979    | 1978    | 1977    | 1976    | 1975    |           |
|        |         |         |         |         |         |         |         |         |           |
| 0.00   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 1         |
| 0.00   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 2         |
| 32.97  | 11.346  | 0.863   | 2.907   | 14.444  | 2.824   | 3.160   | 17.872  | 8.435   | 3         |
| 17.7   | 2.337   | 15.312  | 20.822  | 9.265   | 6.550   | 17.040  | 9.792   | 21.923  | 4         |
| 1.70   | 8.547   | 11.108  | 3.674   |         | 9.909   | 4.120   | 10.681  | 96.284  | 5         |
| 5.77   | 4.640   | 1.394   | 1.299   | 4.619   | 2.599   | 4.618   | 34.484  | 5.882   | 6         |
| 1.99   | 0.441   | 0.477   | 1.513   | 0.401   | 2.216   | 15.537  | 1.881   | 2.554   | 7         |
| 0.2    | 0.232   | 0.593   | 0.127   | 0.556   | 6.433   | 0.662   | 0.844   | 1.506   | 8         |
| 0.14   | 0.199   | 0.130   | 0.124   | 2.962   | 0.268   | 0.452   | 0.415   | 0.589   | <u></u> 9 |
| 0.10   | 0.051   | 0.043   | 1.024   | 0.087   | 0.208   | 0.140   | 0.179   | 0.158   | 10        |
| 0.00   | 0.046   | 0.300   | 0.026   | 0.000   | 0.069   | 0.108   | 0.063   | 0.103   | - 11      |
| 60.77  | 27.839  | 30.220  | 31.515  | 35.815  | 31.076  | 45.838  | 76.211  | 137.435 | 1+        |
| 1992   | 1991    | 1990    | 1989    | 1988    | 1987    | 1986    | 1985    | 1984    |           |
| 0.00   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 1         |
| 0.00   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 2         |
| 283.55 | 46.60   | 31.063  | 88.656  | 59.289  | 19.729  | 65.185  | 60.336  | 45.986  | 3         |
| 249.90 | 257.879 | 251.930 | 166.356 | 138.379 | 159.800 | 77.200  | 89.358  | 53.428  | . 4       |
| 242.99 | 248.456 | 176.965 | 135.694 | 140.672 | 61.827  | 79.380  | 43.772  | 9.341   | 5         |
| 210.88 | 146.792 | 119.301 | 106.892 | 46.894  | 61.454  | 36.742  | 4.335   |         | 6         |
| 120.93 | 102.415 | 73.428  | 41.730  | 50.329  | 28.812  | 1.857   | 0.725   | 3.325   | 7         |
| 82.40  | 58,536  | 27.277  | 42.894  | 23.465  | 0.721   |         | 1.752   | 0.828   | 8         |
| 45.86  | 19.548  | 31.826  | 19.209  | 0.359   | 0.285   | 1.349   | 0.337   | 0.007   | 9         |
| 17.78  | 24.205  | 15.461  | 0.276   | 0.239   | 0.895   | 0.226   | 0.002   | 0.076   | 10        |
|        |         | 0.976   |         |         |         |         |         | 0.033   |           |
|        | 905.340 |         | 602.147 | 459.826 |         | 263,310 | 200.734 | 114.237 | 1+        |

Table C8.Spawning stock biomass (thousands of metric tons) at the start of the spawning season - males and<br/>females for coastal United States, Georges Bank, and New Brunswick fixed gear fisheries, 1967-1992

discards of herring in the shrimp fishery are an unquantified source of mortality at this time and should be investigated.


Current SSB and stock size depend to some degree on estimates of the 1989 and 1990 year classes which appear to be very large. Future near-term estimates of these variables will depend heavily on the size of these cohorts. Until these year classes are estimated more precisely, it will be uncertain whether Atlantic herring SSB\_ is closer to 1.0 or 2.0 million mt.


Weights-at-age used to estimate the age composition of the U.S. landings in this analysis were not weighted according to temporal or spatial variations in the landings and were not consistent with the New Brunswick weights-at-age, which are weighted by magnitude of monthly catches.

and a straight of the second secon

and a second

te de la composition La composition de la c





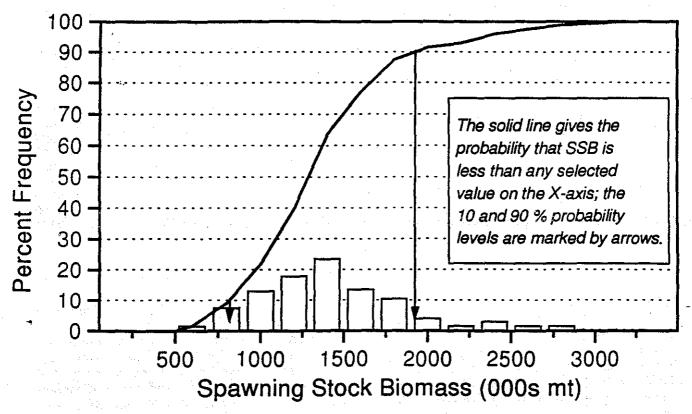



Figure C4. Precision of the estimates of spawning stock biomass (thousands of metric tons) for Atlantic herring derived from a statistical procedure known as bootstrap. The vertical bars give the range and probability of individual values within that range.

| Ρ | aq | e | 7 | 1 |  |
|---|----|---|---|---|--|
|   |    |   |   |   |  |

| ge       | 1967            | 1968      | 1969      | 1970      | 1971      | 1972      | 1973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------|-----------------|-----------|-----------|-----------|-----------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i        | 5323.340        | 2656.877  | 2090.365  | 1412.872  | 7716.750  | 1184.195  | 1008.596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2        | 2842.274        | 4234.826  | 2161.251  | 1646.786  | 1151.342  | 6177.998  | 962.072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3        | 1821.502        | 1943.325  | 2207.260  | 1243.057  | 900.923   | 731.450   | 4152.348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4        | 1835.179        | 1284.465  | 1340.257  | 1447.388  | 845.828   | 366.241   | 540.290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5        | 1177.255        | 1313.624  | 888.263   | 885.288   | 739.054   | 395.810   | 150.410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6        | 1521.853        | 845.746   | 716.067   | 455.136   | 456.836   | 303.540   | 87.238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7        | 1286.988        | 1001.392  | 450.919   | 306.128   | 235.307   | 173.297   | 58.981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8        | 189.118         | 701.389   | 399.365   | 172.968   | 134.745   | 69.658    | 27.729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9        | 41.686          | 109.432   | 252.027   | 132.207   | 69.978    | 47.542    | 6,750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0        | 51.127          | 23.679    | 66.875    | 88.705    | 62.321    | 33.414    | 9.770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1        | 0.832           | 1.673     | 2.319     | 7.802     | 7.133     | 2.265     | 0.588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| +        | 16091.155       | 14116.430 | 10574.969 | 7798.338  | 12320.217 | 9485.411  | 7004.773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ge       | 1974            | 1975      | 1976      | 1977      | 1978      | 1979      | 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1        | 1662.639        | 1024.818  | 1290.397  | 3597.392  | 2767.829  | 410.829   | 2359.726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2        | 791.910         | 1329.928  | 798.206   | 988.281   | 2404.944  | 2021.982  | 330.422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3        | 469.863         | 259.941   | 504.464   | 172.821   | 284.955   | 862.856   | 593.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4        | 2222.145        | 251.771   | 106.295   | 187.444   | 66.094    | 107,999   | 324.117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5        | 176.321         | 1140.339  | 104.691   | 44.192    | 89.621    | 30.524    | 36.177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6        | 53.590          | 73,194    | 381.354   | 41.024    | 17.225    | 34.549    | 10.441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7        | 28.590          | 27.218    | 18.014    | 123.215   | 16.893    | 8.511     | 12.832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8        | 15.553          | 15.164    | 6.522     | 5.338     | 55,937    | 6.357     | 1.403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9        | 4.968           | 7.676     | 3.919     | 2.308     | 1.991     | 16.679    | 1.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0        | 1.129           | 1.280     | 1.235     | 0.901     | 1.284     | 0.635     | 7.241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1        | 0.926           | 0.780     | 0.363     | 0.730     | 0.428     | 0.002     | 0.190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| +        | 5427.632        | 4132.110  | 3215.460  | 5163.647  | 5707.201  | 3500.923  | 3676.671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ge       | 1981            | 1982      | 1983      | 1984      | 1985      | 1986      | 1987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1        | 1758.949        | 1767.171  | 1504.825  | 3970.583  | 2955.043  | 3318.568  | 5179.172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2        | 1621.485        | 1384.268  | 1399.152  | 1202.359  | 3233.755  | 2392.059  | 2680.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3        | 62.369          | 269.633   | 527.581   | 903.512   | 816.977   | 2138.377  | 1734.541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4        | 156.911         | 19.973    | 121.098   | 378.471   | 619.299   | 592.588   | 1547.031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5        | 97. <b>8</b> 97 | 66.849    | 10.272    | 72.997    | 273.365   | 460.829   | 441.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6        | 9.921           | 37.724    | 27.342    | 7.279     | 33.995    | 199.228   | 342.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7        | 2.975           | 3.725     | 13.422    | 16.395    | 4.023     | 15.572    | 148.410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| B        | 3.077           | 1.205     | 1.077     | 4.329     | 9.514     | 2.226     | 5.773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ð        | 0.380           | 1.433     | 0.606     | 0.583     | 1.988     | 5.627     | 1.497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| )        | 0.290           | 0.248     | 0.432     | 0.325     | 0.007     | 0.976     | 4.191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1        | 1.655           | 0.305     | 0.003     | 0.107     | 0.498     | 3.784     | 0.131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| +        | 3715.908        | 3552.533  | 3605.810  | 6556.940  | 7948.465  | 9129.836  | 12085.148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ge       | 1988            | 1989      | 1990      | 1991      | 1992      | 1993      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1        | 5516.156        | 5836.607  | 19314.886 | 21109.065 | 2074.415  | 0.000     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2        | 4194.210        | 4444.511  | 4754.125  | 15802.299 | 17277.628 | 1697.664  | NACTOR AND A CONTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3        | 1991.882        | 2979.474  | 3222.443  | 3375.641  | 12519.992 | 13638.094 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ł        | 1298.141        | 1530.432  | 2289.157  | 2438.742  | 2600.472  | 10037.938 | a di serie d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5        | 1103.270        | 1006.619  | 1155.154  | 1793.347  | 1904.651  | 2036.684  | · • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.       | 320.703         | 788.719   | 750.551   | 911.385   | 1409.182  | 1481.951  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7 .*     | 264.076         | 231.027   | 482.254   | 575.437   | 716.075   | 1109.883  | an an an an an an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3.       | 116.360         | 207.937   | 162.664   | 320.205   | 450.054   | 563.987   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>)</b> | 2.600           | 93.295    | 162.662   | 107.363   | 242.762   | 354.467   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>)</b> | 1.036           | 1.152     | 74.392    | 119.866   | 79.079    | 191.201   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| L È      | 1.032           | 1.911     | 4.040     | 3.616     | 1.160     | 63.197    | · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ۲. I     | 14809.465       | 17121.684 | 32372.327 | 46556.966 | 39275.472 | 31175.067 | 10 B. C. B. |

Stock numbers (Jan 1) in millions of fish for coastal United States, Georges Bank, and New Brunswick fixed gear fisheries for 1967, 1993 Table C9.

Table C10. Yield and spawning stock biomass per recruit estimates for the Atlantic herring coastal stock complex

| Propo                            | ertion of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of M befo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng: .6700                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                                                |                                                                                                             |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Natur<br>Initi                   | al Mori<br>al age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tality is<br>is: 1;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Constant<br>Last age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | : ăt: .200<br>1 <b>s:</b> 10                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                                                |                                                                                                             |
| Case<br>Origi                    | AGE 15<br>nal age<br>PRHERGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -specifi<br>1 DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c PRs, Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | is: 10<br>its, and Mea                                                                               | n wes fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on file:             |                                                |                                                                                                             |
|                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ata for 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | field per Re                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                                                |                                                                                                             |
| Age                              | Fish<br>  Patt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Proportion<br>Mature                                                                                 | Averag<br>Stock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e Weights<br>Catch   | 5                                              |                                                                                                             |
| 1                                | 01<br>  94<br>  1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .0000<br>.0000<br>.3600<br>.9600<br>1.0000<br>1.0000                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *******              |                                                |                                                                                                             |
| 3                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 130 <u>1</u> .<br>100 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .0000                                                                                                | .012<br>.047<br>.111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .047<br>.111         |                                                |                                                                                                             |
| - <b>4</b> -                     | 1 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 9600                                                                                               | .161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 161                |                                                |                                                                                                             |
| 5                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00 1.<br>00 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0000                                                                                               | .204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .204<br>.239<br>.277 |                                                |                                                                                                             |
| 67                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00 İ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                      | .239<br>.277<br>.281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :277                 |                                                |                                                                                                             |
| 8                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0000                                                                                               | .281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .231                 |                                                |                                                                                                             |
| 10+                              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0000                                                                                               | .298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .298                 |                                                |                                                                                                             |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                                                |                                                                                                             |
| Sueeau                           | ry of Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ield per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Recruit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analysis for                                                                                         | <br>P:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                |                                                                                                             |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysis fo<br>AVG AUG-SE                                                                            | PT FROM :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAMPLES              |                                                |                                                                                                             |
| Slop                             | of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                                                |                                                                                                             |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e Tield/R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ecruit C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | urve at F=0                                                                                          | .00:>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 1                                              | -                                                                                                           |
| F                                | level a<br>rie3d/R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e Tield/R<br>t slope=3<br>ecruit co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acruit C<br>/10 of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | urve at F=0<br>he above slo                                                                          | .00:><br>pa (F0.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | 1 .146                                         |                                                                                                             |
| F                                | level a<br>(1e)d/R<br>level t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e Tield/R<br>t slope=1<br>ecruit co<br>o produce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ACTUIE C<br>10 of E<br>Frespond<br>Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | urve at F=0<br>he above slo<br>ing to F0.1<br>Yield/Recru                                            | .00:><br>pm (F0.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .784<br>L);056       | 1<br>> .1/16<br>1<br>> .342                    | -                                                                                                           |
| F                                | ievel a<br>field/R<br>ievel t<br>field/R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e field/R<br>t slope=1<br>ecruit co<br>o produce<br>ecruit co<br>t 20 % of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lecruit C<br>/10 of t<br>rrespond<br>maximum<br>rrespond<br>Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | urve at F=0<br>he above slo<br>ing to F0.1<br>Yield/Recri<br>ing to Feax:                            | .00:><br>pm (F0.)<br>it (Fman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .784<br>L);056       | 1<br>> .146<br>1<br>> .342<br>6<br>788         |                                                                                                             |
| F                                | ievel a<br>rield/R<br>ievel t<br>rield/R<br>ievel a<br>is8/Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e field/R<br>t slope=2<br>ecruit co<br>o produce<br>ecruit co<br>t 20 % of<br>ruit corr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lecruit C<br>/10 of t<br>mrespond<br>Maximum<br>rrespond<br>Max Spa<br>espondin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | urve at F=0<br>ing to F0.1<br>Yield/Recruing to Fmax:<br>whing to Fmax:<br>whing Potent<br>g to F20: | .00:><br>pm (F0.)<br>it (Fma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .784<br>L);056       | 1<br>1<br>1<br>342<br>6<br>289<br>0            |                                                                                                             |
| F                                | ievel a<br>rield/R<br>ievel t<br>rield/R<br>ist8/Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e field/R<br>t slope-1<br>ecruit co<br>o produce<br>ecruit co<br>t 20 % of<br>ruit corr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ecruit C<br>/10 of t<br>rrespond<br>Maximum<br>rrespond<br>Max Spa<br>respondin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | urve at F=0<br>he above sli<br>ing to F0.1<br>Yield/Recri<br>ing to Fmax<br>ming Potent<br>g to F20: | .00:><br>ppm (F0.)<br>it (Fmau<br>tial (F2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .784<br>L);056       | 1<br>> .146<br>1<br>> .342<br>6<br>> .289<br>0 | _                                                                                                           |
| F                                | star a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t 20 % of<br>ruit corr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Max Spar<br>respondin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ning Potent<br>g to F20:                                                                             | tial (F2(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .784<br>L);          | 1<br>> .146<br>1<br>> .342<br>6<br>> .289<br>0 | -                                                                                                           |
| F<br>istin<br>ist/R              | avel a<br>S8/Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t 20 % of<br>ruit corr<br>ield per<br>IS - 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Max Sparespondin<br>Recruit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Results for<br>AVG AUG-SE                                                                            | T FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | .289                                           | _                                                                                                           |
| F<br>istin<br>ist/R              | evel a<br>S8/Rec<br>ANALYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ield per<br>IS - 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Max Spa<br>espondin<br>Recruit<br>-92, WTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Results for<br>AVG AUG-SEI                                                                           | T FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | .289                                           | -                                                                                                           |
| F<br>istin<br>ist/R              | ANALYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120 % of<br>ruit corr<br>ield per<br>IS - 1988<br>TOTCTHW<br>.00000<br>.11356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Max Spa<br>espondin<br>Recruit<br>-92, WTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Results for<br>AVG AUG-SEI                                                                           | T FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | .289                                           | -<br>-<br>X<br>10                                                                                           |
| F<br>istin<br>ist/R              | 6761 a<br>558/Rec<br>Analys<br>MORT<br>.000<br>.032<br>.065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t 20 % of<br>ruit corr<br>ield per<br>IS - 1988<br>TOTCTHW<br>.00000<br>.11356<br>.19931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Max Spa<br>espondin<br>Recruit<br>-92, WTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Results for<br>AVG AUG-SEI                                                                           | T FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | .289                                           | -<br>X<br>10<br>7<br>6                                                                                      |
| F<br>istin<br>ist/R              | 6vel a<br>58/Rec<br>38/Rec<br>4000<br>4000<br>-032<br>-065<br>-097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t 20 % of<br>ruit corr<br>ield per<br>IS - 1988<br>TOTCTHW<br>.00000<br>.11356<br>.19931<br>.26636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hux Spare<br>espondin<br>-92, WTS<br>TOFCTHW<br>.00000<br>.02067<br>.03430<br>.04346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Results for<br>AVC AUG-SEI<br>TOTSTRN<br>5.5167<br>4.9510<br>4.5245<br>4.1914                        | T FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | .289                                           |                                                                                                             |
| f<br>tsttr<br>SB/R               | 4041 a<br>558/Rec<br>10 of Y<br>ANALYS<br>HORT<br>.000<br>.032<br>.065<br>.097<br>.130<br>.162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t 20 % of<br>ruit corr<br>ield per<br>IS - 1988<br>TOTCTHW<br>.00000<br>.11356<br>.19931<br>.26636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hux Spare<br>espondin<br>-92, WTS<br>TOFCTHW<br>.00000<br>.02067<br>.03430<br>.04346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Results for<br>AVC AUG-SEI<br>TOTSTRN<br>5.5167<br>4.9510<br>4.5245<br>4.1914                        | T FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | .289                                           | -<br>X<br>10<br>7<br>6<br>5<br>4<br>3                                                                       |
| f<br>tsttr<br>SB/R               | 4041 as<br>58/Rec<br>19 of Y<br>ANALYS<br>MORT<br>.000<br>.032<br>.045<br>.097<br>.130<br>.162<br>.126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t 20 % of<br>ruit corr<br>ield per<br>IS - 1988<br>TOTCTHW<br>.00000<br>.11356<br>.19931<br>.26636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hux Spare<br>espondin<br>-92, WTS<br>TOFCTHW<br>.00000<br>.02067<br>.03430<br>.04346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Results for<br>AVC AUG-SEI<br>TOTSTRN<br>5.5167<br>4.9510<br>4.5245<br>4.1914                        | T FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | .289                                           | -<br>10<br>7<br>6<br>5<br>4<br>3<br>3                                                                       |
| f<br>tsttr<br>SB/R               | evel a<br>558/Rec<br>19 of Y<br>ANALYS<br>HORT<br>.000<br>.032<br>.065<br>.097<br>.130<br>.162<br>.185<br>.195<br>.227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t 20 % of<br>ruit corr<br>ield per<br>IS - 1988<br>TOTCTHW<br>.00000<br>.11356<br>.19931<br>.26636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hux Spare<br>espondin<br>-92, WTS<br>TOFCTHW<br>.00000<br>.02067<br>.03430<br>.04346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Results for<br>AVC AUG-SEI<br>TOTSTRN<br>5.5167<br>4.9510<br>4.5245<br>4.1914                        | T FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | .289                                           | -<br>X<br>10<br>7<br>6<br>5<br>4<br>3<br>3<br>3<br>3                                                        |
| F<br>istin<br>SB/R               | evel a<br>SS8/Rec<br>is of Y<br>ANALYS<br>MORT<br>.000<br>.032<br>.067<br>.130<br>.097<br>.136<br>.195<br>.226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t 20 % of<br>ruit corr<br>ield per<br>IS - 1988<br>TOTCTHW<br>.00000<br>.11356<br>.19931<br>.26636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hux Spare<br>espondin<br>-92, WTS<br>TOFCTHW<br>.00000<br>.02067<br>.03430<br>.04346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Results for<br>AVC AUG-SEI<br>TOTSTRN<br>5.5167<br>4.9510<br>4.5245<br>4.1914                        | T FROM 1<br>T FROM 1<br>T FROM 1<br>T0TSTRW<br>.7763<br>.7263<br>.6147<br>.5293<br>.4626<br>.4093<br>.3765<br>.3659<br>.3301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | .289                                           | -<br>X<br>10<br>7<br>6<br>5<br>5<br>4<br>3<br>3<br>3<br>2<br>2                                              |
| F<br>istin<br>SB/R               | evel a<br>SS8/Rec<br>is of Y<br>ANALYS<br>MORT<br>.000<br>.032<br>.067<br>.130<br>.097<br>.136<br>.195<br>.226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t 20 % of<br>ruit corr<br>ield per<br>IS - 1988<br>TOTCTHW<br>.00000<br>.11356<br>.19931<br>.26636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hux Spare<br>espondin<br>-92, WTS<br>TOFCTHW<br>.00000<br>.02067<br>.03430<br>.04346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Results for<br>AVC AUG-SEI<br>TOTSTRN<br>5.5167<br>4.9510<br>4.5245<br>4.1914                        | T FROM 1<br>T FROM 1<br>T FROM 1<br>T0TSTRW<br>.7763<br>.7263<br>.6147<br>.5293<br>.4626<br>.4093<br>.3765<br>.3659<br>.3301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | .289                                           |                                                                                                             |
| F<br>1st1r<br>558/R<br>F<br>70.1 | evel a<br>SS8/Rec<br>SS8/Rec<br>ANALYS<br>HORT<br>.000<br>.032<br>.065<br>.097<br>.130<br>.162<br>.195<br>.227<br>.226<br>.289<br>.292<br>.325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t 20 % of<br>ruit corr<br>ield per<br>IS - 1988<br>TOTCTHW<br>.00000<br>.11356<br>.19931<br>.26636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hux Spare<br>espondin<br>-92, WTS<br>TOFCTHW<br>.00000<br>.02067<br>.03430<br>.04346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Results for<br>AVC AUG-SEI<br>TOTSTRN<br>5.5167<br>4.9510<br>4.5245<br>4.1914                        | T FROM 1<br>T T T T T T T T T T T T T T T T T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | .289                                           | -<br>X<br>10<br>7<br>6<br>5<br>5<br>4<br>3<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>2<br>1<br>1                |
| 1sth                             | evel a<br>SS8/Rec<br>is of Y<br>ANALYS<br>HORT<br>.000<br>.097<br>.130<br>.162<br>.186<br>.227<br>.269<br>.229<br>.325<br>.342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t 20 % of<br>ruit corr<br>ield per<br>IS - 1988<br>TOTCTHW<br>.00000<br>.11356<br>.19931<br>.26636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hux Spare<br>espondin<br>-92, WTS<br>TOFCTHW<br>.00000<br>.02067<br>.03430<br>.04346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Results for<br>AVC AUG-SEI<br>TOTSTRN<br>5.5167<br>4.9510<br>4.5245<br>4.1914                        | T FROM 1<br>T T T T T T T T T T T T T T T T T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | .289                                           | 100765544<br>33332222111                                                                                    |
| F<br>1st1r<br>is8/R<br>0.1       | evel a<br>SS8/Rec<br>SS8/Rec<br>is of Y<br>ANALYS<br>HORT<br>.000<br>.035<br>.097<br>.130<br>.162<br>.185<br>.227<br>.289<br>.295<br>.342<br>.342<br>.357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t 20 % of<br>ruit corr<br>ield per<br>IS - 1988<br>TOTCTHW<br>.00000<br>.11356<br>.19931<br>.26636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hux Spare<br>espondin<br>-92, WTS<br>TOFCTHW<br>.00000<br>.02067<br>.03430<br>.04346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Results for<br>AVC AUG-SEI<br>TOTSTRN<br>5.5167<br>4.9510<br>4.5245<br>4.1914                        | T FROM 1<br>T T T T T T T T T T T T T T T T T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | .289                                           | 1007<br>554<br>33332<br>22211<br>1111                                                                       |
| F<br>1st1r<br>is8/R<br>0.1       | evel a sist / Rec<br>sist / Rec<br>a sist / Rec                                                                                                                                                                                                                                                                                                                                                                                                      | 141d per<br>161d per<br>15 - 1548<br>15 - 1548<br>107CTHM<br>.00000<br>.11356<br>.26036<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35456<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35456<br>.32023<br>.35456<br>.32023<br>.35456<br>.32023<br>.35456<br>.32023<br>.35546<br>.32023<br>.35546<br>.32023<br>.35546<br>.32023<br>.35456<br>.32023<br>.35546<br>.32023<br>.35546<br>.32023<br>.35546<br>.32023<br>.35546<br>.32023<br>.35546<br>.32023<br>.35546<br>.32023<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.355778<br>.35576<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.355778888<br>.35577888<br>.3557788<br>.3557788<br>.3557788                                                                                                         | P which speed<br>we poind in<br>Part Speed<br>P2, which speed<br>TOTCTHW<br>.00000<br>.02067<br>.03430<br>.04346<br>.04346<br>.04368<br>.05389<br>.05569<br>.05569<br>.05569<br>.05569<br>.056031<br>.06057<br>.06059<br>.06034<br>.05634<br>.05634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Results for<br>AVC AUG-SEI<br>TOTSTRN<br>5.5167<br>4.9510<br>4.5245<br>4.1914                        | T FROM 1<br>T T T T T T T T T T T T T T T T T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | .289                                           | -<br>X<br>10<br>7<br>6<br>5<br>5<br>4<br>4<br>3<br>3<br>3<br>2<br>2<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1 |
| F<br>1st1r<br>is8/R<br>0.1       | evel a ssa/Rec<br>ssa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Rec<br>assa/Re | 141d per<br>161d per<br>15 - 1548<br>15 - 1548<br>107CTHM<br>.00000<br>.11356<br>.26036<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35456<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35456<br>.32023<br>.35456<br>.32023<br>.35456<br>.32023<br>.35456<br>.32023<br>.35546<br>.32023<br>.35546<br>.32023<br>.35546<br>.32023<br>.35456<br>.32023<br>.35546<br>.32023<br>.35546<br>.32023<br>.35546<br>.32023<br>.35546<br>.32023<br>.35546<br>.32023<br>.35546<br>.32023<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.355778<br>.35576<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.355778888<br>.35577888<br>.3557788<br>.3557788<br>.3557788                                                                                                         | Pac Space<br>Pac Space | Results for<br>AVC AUG-SEI<br>TOTSTRN<br>5.5167<br>4.9510<br>4.5245<br>4.1914                        | T FROM 1<br>T T T T T T T T T T T T T T T T T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | .289                                           | - X<br>107765544<br>3332222111111111111111111111111111111                                                   |
| F<br>1stin<br>58/R<br>0.1        | evel a sist / Rec<br>sist / Rec<br>a sist / Rec                                                                                                                                                                                                                                                                                                                                                                                                      | 1414 per<br>1414 per<br>15 - 1548<br>15 - 1548<br>107CTHM<br>11135<br>15931<br>11135<br>12635<br>36446<br>32023<br>36446<br>3224<br>43282<br>43282<br>43224<br>43282<br>43282<br>43282<br>43282<br>50374<br>43282<br>50375<br>50375<br>52157<br>52157<br>52556<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>5 | P which space<br>we poind in<br>P32, which space<br>TOTCTHW<br>.00000<br>.02067<br>.03430<br>.04346<br>.04346<br>.04368<br>.05369<br>.05564<br>.05564<br>.05959<br>.06031<br>.06059<br>.06059<br>.06059<br>.06054<br>.05554<br>.05554<br>.05554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Results for<br>AVC AUG-SEI<br>TOTSTRN<br>5.5167<br>4.9510<br>4.5245<br>4.1914                        | TF FROM S<br>FOTSTRUM<br>8793<br>7268<br>6147<br>5293<br>4626<br>6147<br>5293<br>4626<br>6359<br>3301<br>3002<br>2773<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>274 |                      | .289                                           |                                                                                                             |
| F<br>istir<br>SB/R<br>0.1        | evel a<br>ss8/Rec<br>ss8/Rec<br>is of Y<br>ANALYS<br>000<br>.092<br>.005<br>.097<br>.130<br>.162<br>.185<br>.227<br>.345<br>.345<br>.357<br>.350<br>.355<br>.353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1414 per<br>1414 per<br>15 - 1548<br>15 - 1548<br>107CTHM<br>11135<br>15931<br>11135<br>12635<br>36446<br>32023<br>36446<br>3224<br>43282<br>43282<br>43224<br>43282<br>43282<br>43282<br>43282<br>50374<br>43282<br>50375<br>50375<br>52157<br>52157<br>52556<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55563<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>55565<br>5 | P which space<br>we poind in<br>P32, which space<br>TOTCTHW<br>.00000<br>.02067<br>.03430<br>.04346<br>.04346<br>.04368<br>.05369<br>.05564<br>.05564<br>.05959<br>.06031<br>.06059<br>.06059<br>.06059<br>.06054<br>.05554<br>.05554<br>.05554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Results for<br>AVC AUG-SEI<br>TOTSTRN<br>5.5167<br>4.9510<br>4.5245<br>4.1914                        | TF FROM S<br>FOTSTRUM<br>8793<br>7268<br>6147<br>5293<br>4626<br>6147<br>5293<br>4626<br>6359<br>3301<br>3002<br>2773<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>2749<br>274 |                      | .289                                           |                                                                                                             |
| F<br>Istir<br>SB/R<br>0.1        | evel a start and a start and a start a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 141d per<br>161d per<br>15 - 1548<br>15 - 1548<br>107CTHM<br>.00000<br>.11356<br>.26036<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.36446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35456<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35446<br>.32023<br>.35456<br>.32023<br>.35456<br>.32023<br>.35456<br>.32023<br>.35456<br>.32023<br>.35546<br>.32023<br>.35546<br>.32023<br>.35546<br>.32023<br>.35456<br>.32023<br>.35546<br>.32023<br>.35546<br>.32023<br>.35546<br>.32023<br>.35546<br>.32023<br>.35546<br>.32023<br>.35546<br>.32023<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.35576<br>.355778<br>.35576<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.355778<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.3557788<br>.355778888<br>.35577888<br>.3557788<br>.3557788<br>.3557788                                                                                                         | P which space<br>we poind in<br>P32, which space<br>TOTCTHW<br>.00000<br>.02067<br>.03430<br>.04346<br>.04346<br>.04368<br>.05369<br>.05564<br>.05564<br>.05959<br>.06031<br>.06059<br>.06059<br>.06059<br>.06054<br>.05554<br>.05554<br>.05554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ring Co read.<br>ming Potenting<br>to F20:                                                           | T FROM 1<br>T T T T T T T T T T T T T T T T T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                                                |                                                                                                             |

# DISCUSSION

The sensitivity of the assessment to the natural mortality rate applied to all ages was discussed. Natural mortality rate was set at 0.2 for all ages and thus has exceeded fishing mortality rate in recent years. As a consequence of the decrease in fishing mortality rate relative to natural mortality, the precision of the VPA has also decreased. The appropriateness of the M used in the assessment was discussed and it was indicated that this rate was established from extensive research on herring populations in the U.S. and compared favorably to rates used for herring assessments elsewhere. It was felt the assessment could benefit from a sensitivity analysis of the assumed natural mortality rate.

It was noticed that the mean weights used in the VPA have been variable over time and that the most recent trend is toward lower weights at age. Weights are entered into the VPA as mid-year means, but it was questioned whether or not seasonal differences were adequately adjusted for when the yearly means are computed. It was pointed out that herring can grow at surprisingly rapid rates and that significant changes in weight can occur in time periods as short as a fortnight. It was speculated that the change in weight may reflect compensatory growth of the stock, which

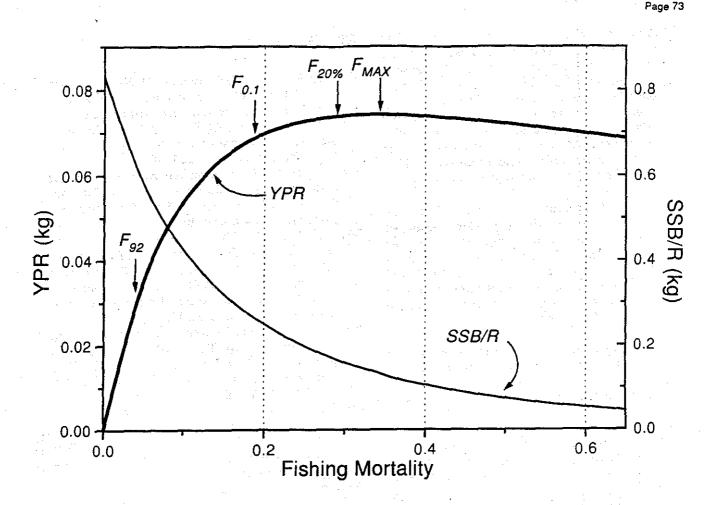



Figure C5. Yield and spawning stock biomass per recruit (kilograms) for Atlantic herring.

would be consistent with the overall pattern of results of the VPA. However, sampling problems in capturing the true trend in mean weights could not be totally discounted. A remedial measure to understand the trends in weight of the commercial data series would be to compare commercial fish weights to those taken on survey cruises by area and season.

The VPA currently consists of 10 true ages and a plus group beginning at age 11. It was pointed out that fishing mortality rates have been quite variable for older age fish reflecting the relatively low catches of these age groups. It was suggested that the number of ages in the VPA could be reduced. Though catch of older ages fish was now low, it has been higher in the past. Since there is an expectation that catch of older age herring will increase and that these ages can be adequately aged, it was agreed there was benefit to maintaining the catch at age matrix in its present configuration.

Other discussion points are captured by modification of report text or directly in the recommendation section.

# **RESEARCH RECOMMENDATIONS**

- Although considered adequate, survey indices used to tune this assessment are variable. It is recommended that the use of transformations be examined with respect to ADAPT tuning. As long as fishing mortalities remain low, other simpler assessment models, such as surplus production or modified DeLury approaches, might be used to provide a similar level of precision.
- With the inclusion of Georges Bank catches from foreign fleets in the coastal stock complex, it is recognized that developingrelationships with former Eastern Bloc fisheries agencies may enhance our understanding of this fishery. It is recommended that contacts with former fishing nations be pursued so that potential sources of foreign catch and logbook data (*i.e.* Eastern Bloc and former Soviet Union ICNAF data) might be made available to the Working Group.

- A perhaps unforeseen result of recent low catches and high stock biomasses for many of the pelagic species is that these stocks are becoming harder to assess with agebased methods. A dedicated pelagic survey utilizing hydroacoustic and trawling methods would provide another direct and independent means of estimating stock sizes for these increasing pelagic resources. This type of survey be pursued in future.
- The herring working group should investigate alternative methods of estimating mean weights-at-age used to determine the age composition of U.S. and Canadian landings from the coastal stock complex. Predicted weights and weighted estimates based on the temporal and spatial distribution of the catch are two possibilities.
- The frequency of assessment updates for this stock complex should be changed from every year to every two years, since the status of the stock is so optimistic and patterns in landings are not changing.
- The estimation of age 3 herring, the natural mortality rate assumed for all ages, the use of catch-per-unit-effort tuning indices, and the use of NEFSC fall bottom trawl survey tuning indices in the analytical assessment should be re-investigated.
- The SARC recommends the water displacement volume of the coastal stock complex be computed.
- Currently, scientific advice concerning the coastal stock complex includes an evaluation of the status of individual spawning components achieved by examining the abundance and distribution of small herring larvae. In this regard, the SARC noted the importance of the continuation of traditional larval surveys. Of equal concern is the current lack of information from certain spawning areas, such as Jeffreys Ledge. Because of planned changes in the NEFSC survey of larval fish populations, a retrospective analysis of herring larval and assessment data should be carried out to determine the role larval data plays in anticipating stock collapse and as a tuning index in the age-structured assessment.

#### REFERENCES

- Conser, R. J., and J.E. Powers. 1990. Extension of the ADAPT VPA tuning method designed to facilitate assessment work on tuna and swordfish stocks. *ICCAT* [International Commission for the Conservation of Atlantic Tunas] *Coll. Vol. Sci. Pap.* 32:461-467.
- Gavaris, S. 1988. An adaptive framework for the estimation of population size. *CAFSAC* [Canadian Atlantic Fisheries Scientific Advisory Committee] *Res. Doc.* 88/29.
- Mohn, R.K., and R. Cook. 1993. Introduction to sequential population analysis. NAFO [North Atlantic Fishery Organization] SRS [Scientific Council Studies] Doc. 93/17. Special Session on Fish Stock Assessment Calibration Methods 9-11 September 1992.
- NEFSC [Northeast Fisheries Science Center]. 1992. Report of the Thirteenth Regional Stock Assessment Workshop (13th SAW), Fall 1992. Woods Hole, MA: NOAA/NMFS/NEFSC. NEFSC Ref. Doc. 92-02.
- Stephenson, R.L. and I. Kornfield. 1990. Reappearance of spawning herring on Georges Bank: population resurgence not recolonization. Can. J. Fish. Aquat. Sci. 47:1060-1064.
- Stephenson, R.L., M.J. Power, J.B. Sochasky, W.H. Dougherty, F.J. Fife, G.D. Melvin and D.E. Lane. 1991. 4WX Herring Assessment. *CAFSAC* [Canadian Atlantic Fisheries Scientific Advisory Committee] Res. Doc. 92/69.
- Thompson, W.F., and W.F. Bell. 1934. Biological statistics of the Pacific halibut fishery. 2.
  Effect of changes in intensity upon total yield an yield per unit of gear. Rep. Int. Fish. (Pacific Halibut) Comm. 8.

# **D. AMERICAN LOBSTER**

### TERMS OF REFERENCE

The following terms of reference were addressed:

- a. Examine selectivity of survey gear relative to pre-recruit and fully recruited lobsters and relative availability and incorporate these estimates to the DeLury analysis for the three stock areas. (See the section on estimates of stock size and fishing mortality, page 82.)
- b. Estimate research vessel survey abundance indices of prerecruit and fully-recruited lobsters. (See the section on stock abundance indices page 81.)
- c. Provide length-based cohort and DeLury model estimates of fishing mortality rates and stock sizes for the three stock areas.
  (See the section on estimates of stock size and fishing mortality, page 82.)
- d. Initiate estimation of growth parameters appropriate to discontinuous growth models, specifically molt probability, and molt increment by sex, where feasible. (See the section on biological reference points, page 98.)
- e. Calculate revised biological reference points including  $F_{max}$ ,  $F_{0.1}$ ,  $F_{10\%}$ , EPR, and  $F_{med}$ which are appropriate to the three stock areas. (See the section on biological reference points, page 98.)
- f. Evaluate the status of lobster stocks relative to overflshing definitions and biological reference points. (See sections on estimates of stock size and fishing mortality, page 82; biological reference points, page 98; and discussion, page 104.)

#### - INTRODUCTION

#### Overview

The American lobster, Homarus americanus, is distributed in the Northwest Atlantic from

Labrador to Cape Hatteras from coastal regions out to depths of 700 m (Fogarty et al. 1982). Lobsters are locally abundant in coastal regions within the Gulf of Maine and off southern New England, and less abundant in more southerly areas. Coastal lobsters are concentrated in rocky areas where shelter is readily available, although occasional high densities occur in mud and other substrates suitable for burrowing. Offshore populations are most abundant in the vicinity of submarine canyons along the continental shelf. edge. Tagging experiments in coastal waters suggest that small lobsters undertake rather limited movement with some evidence (Anthony and Caddy 1980) that larger individuals may travel extensively. In contrast, offshore lobsters show well defined shoalward migrations during the spring, regularly traveling 80 km (50 mi) with a few traveling as much as 300 km (186 mi). Lateral movements along the shelf edge have been demonstrated as well (Uzmann et al. 1977).

The lobster fishery is currently managed in the Exclusive Economic Zone under the New England Fishery Management Council's Lobster FMP (NEFMC 1991), and within territorial waters under various states' regulations. The primary regulatory measures used throughout the range are minimum carapace length (CL) and ovigerous female protection. Other regulations apply in specific states.

The current assessment attempts to address some of the shortcomings previously identified in SARC analyses (*e.g.* SARC 14). Several new aspects of the analysis include:

- 1. incorporation of three lobster stock assessment units encompassing the geographic range in U.S. waters,
- 2: extended and expanded research vessel trawl survey indices for prerecruit and fullyrecruited lobsters for surveys conducted by NEFSC and the states of Massachusetts, Rhode Island and Connecticut,
- 3. improved estimates of the landings and catch size composition for defined stock areas,
- 4. calculations of biological reference points based on appropriate growth rates and other population dynamics parameters, as well as realistic accounting for various other protections on some components of the

stocks including egg-bearing females, vnotching and minimum/maximum size limits, and

5. improvements to the length-based cohort technique to include growth dynamics based on models other than von Bertalanffy and optional adjustments to the time schedule of removals within the year.

This assessment focuses primarily on evaluating the status of the female portion of the lobster stock, since the overfishing definition adopted by the New England Fishery Management Council is based on lifetime egg production per female recruit.

# Definition of Stock Units for Assessment Purposes

Attempts to define the stock structure of the American lobster based on differences in morphological characteristics, parasite infestation, and biochemical and genetic markers have been equivocal. Differences between inshore and offshore lobsters based on parasite infestation have been used to infer stock differentiation (Uzmann 1970). However, studies using electrophoretic techniques and mitochondrial DNA (Barlow and Ridgeway 1971; Tracey et al. 1975) have shown low levels of genetic variability and little clear evidence of stock separation. Low sample sizes may have contributed to the lack of statistical significance in some of the studies. Examination of morphometric and meristic variables provides some evidence of differences between inshore and offshore populations (Saila and Flowers 1969) but levels of correct classification using discriminant functions were not high.

Mark-recapture studies (for example, Saila and Flowers 1968; Cooper and Uzmann 1971; Uzmann et al. 1977; Briggs 1985) demonstrate seasonal coastward movements of offshore lobsters during spring and a return migration in autumn. Lateral movements along the outer continental shelf between Georges Bank and Southern New England have also been noted. Reported movements for coastal lobsters are more limited (see Anthony and Caddy 1980), but this undoubtedly reflects both the smaller mean size and the relatively short time at large in many of the inshore studies. Studies of larger (>127 mm CL) inshore lobsters in the Gulf of Maine do

Qattor (a para 1714-711 - 11

show longer distance movements in a southwesterly direction.

Consideration of large-scale hydrographic factors suggests that areas within the Gulf of Maine may be connected by a common larval supply. Contribution of larvae to the Gulf of Maine from northeastern Georges Bank is possible based on considerations of larval drift. Similarly, it is probable that offshore lobsters from the southern New England region contribute larvae to the coastal regions in this area.

Life history parameters, particularly growth and maturation rates, differ markedly among regions, with sharp demarcations between coastal lobster populations in the Gulf of Maine, offshore lobsters in the Georges Bank-Southern New England area, and the warmer-water populations inshore south of Cape Cod. These life history differences have important implications for the determination of biological reference points such as yield per recruit and especially egg production per recruit. A single overall rate of growth, maturation schedule, and fecundity does not apply to all stock components. Likewise, because the nature of fishing patterns and regulations vary coastwide, some division of the resource into assessment areas is necessary. For assessment purposes, SARC 14 (NEFSC 1992) analyzed two separate lobster groups: (1) the Gulf of Maine (including inshore and offshore waters), and (2) Southern New England-Georges Bank offshore. With the addition of data for southern inshore areas, we analyzed three proposed stock units for assessment purposes in the current analysis: (1) Gulf of Maine, (2) Georges Bank and South offshore (GBS-O), and (3) South of Cape Cod to Long Island Sound, inshore (SCCLIS-I). The geographic definitions of these three assessment units are illustrated in Figure D.1. It is recognized that there is some exchange of lobsters between the SCCLIS-I and the GBS-O regions. However, since biological rates are so different among the regions, the areas are initially evaluated separately. Lobsters occurring in nearshore oceanic waters south of Long Island, are assumed to be part of the GBS-O stock assessment unit. This reflects the fact that tagging data for statistical areas 613 and 612 have shown distinct inshore-offshore lobster movements (Briggs and Mushacke 1980; Briggs 1982; 1985), and size compositions of lobsters caught there more resemble the offshore than Long Island Sound. Likewise, lobster populations from New Jersey south appear to show affinities to the offshore canyons (Andrews 1980; Van Engel and Harris

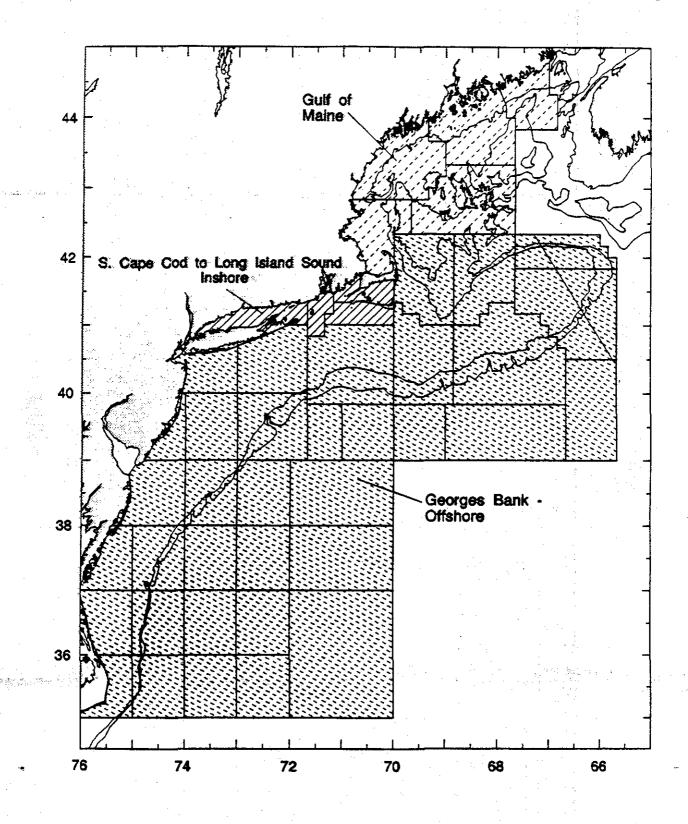



Figure D1. American lobster assessment areas off the northeast United States.

- 20

| Year   |          | State         |              |                    |         |  |
|--------|----------|---------------|--------------|--------------------|---------|--|
|        | Maine    | Massachusetts | Rhode Island | Other <sup>1</sup> | Total   |  |
| 1964   | . 9713.1 | 2489.4        | 452.0        | 1260.6             | 13915.1 |  |
| 1965   | 8555.7   | 2884.9        | 816.5        | 1461.9             | 13718.9 |  |
| 1966   | 9033.8   | 2190.2        | 758.6        | 1417.2             | 13399.8 |  |
| 1967   | 7479.5   | 2154.9        | 884.9        | 1630.5             | 12149.9 |  |
| 1968   | 9299.6   | 2185.1        | 1393.8       | 1876.3             | 14754.8 |  |
| 1969   | 8997.1   | 2248.5        | 1926.1       | 2141.9             | 15313.6 |  |
| 1970   | 8242.9   | 2578.8        | 2356.6       | 2311.0             | 15489.3 |  |
| 1971   | 7964.5   | 2787.7        | 2444.3       | 2084.5             | 15281.0 |  |
| 1972   | 7374.0   | 3643.5        | 1524.5       | 2083.9             | 14625.8 |  |
| 1973   | 7731.2   | 2551.2        | 1257.9       | 1610.3             | 13150.6 |  |
| 1974   | 7465.2   | 2387.4        | 1549.9       | 1544.6             | 12947.1 |  |
| 1975 🥢 | 7714.6   | 3054.5        | 1672.6       | 1256.9             | 13698.5 |  |
| 1976   | 8618.9   | 3111.0        | 1548.0       | 1126.0             | 14403.9 |  |
| 1977   | 8385.8   | 3281.8        | 1583.8       | 1160.8             | 14412.2 |  |
| 1978   | 8677.6   | 4322.7        | 1280.1       | 1350.0             | 15630.4 |  |
| 1979   | 10039.6  | 4333.1        | 1038.3       | 1501.4             | 16912.4 |  |
| 1980   | 9970.4   | 4501.7        | 1086.6       | 1321.8             | 16880.5 |  |
| 1981   | 10265.7  | 5089.6        | 848.8        | 1546.4             | 17750.5 |  |
| 1982   | 10310.4  | 5965.2        | 1439.6       | 1827.8             | 19543.0 |  |
| 1983   | 9968.5   | 5634.2        | 2319.9       | 2406.7             | 20329.3 |  |
| 1984   | 8865.9   | 6668.7        | 2385.9       | 2748.0             | 20668.5 |  |
| 1985   | 9128.7   | 7391.5        | 2331.5       | 2464.9             | 21316.7 |  |
| 1986   | 8937.9   | 6830.1        | 2571.0       | 2443.6             | 20782.6 |  |
| 1987   | 8957.6   | 6857.0        | 2411.8       | 2599.3             | 20825.8 |  |
| 1988   | 9860.7   | 7197.0        | 2158.7       | 3019.2             | 22235.6 |  |
| 1989   | 10600.1  | 7005.4        | 2597.2       | 3626.3             | 23828.9 |  |
| 1990   | 12731.8  | 7735.9        | 3292.3       | 3822.6             | 27582.6 |  |
| 1991   | 13965.7  | 7497.2        | 3377.1       | 4248.6             | 29088.6 |  |
| 1992   | 12170.3  | 6882.7        | 3086.8       | 3189.5             | 25329.3 |  |

| Table D1 | Landinge  | (metric tone) | of American   | lobster by state. | 1064-1002 |
|----------|-----------|---------------|---------------|-------------------|-----------|
|          | Lanonisa. | unciric ionsi | I DI AIRCICAR | IOUSIEF DV SURCE. | 1004-1002 |

<sup>1</sup> "Other" = New Hampshire + Connecticut + New York + New Jersey + Delaware + Maryland + Virginia

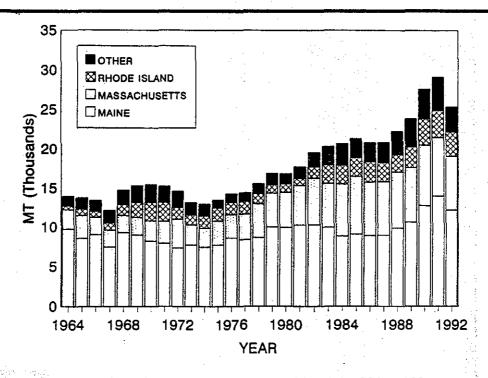



Figure D2. American lobster landings (thousands of metric tons) by state, 1964-1992.

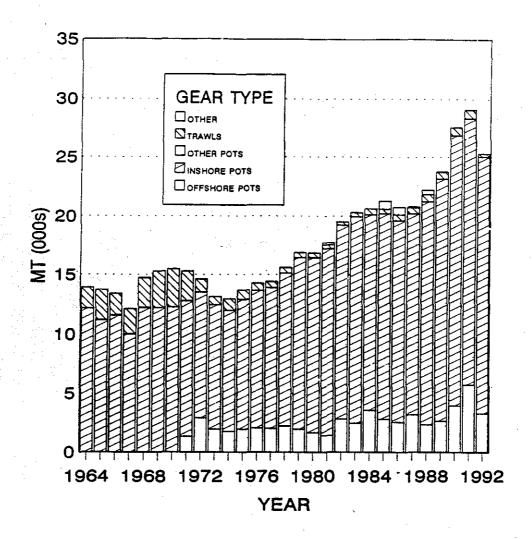



Figure D3. American lobster landings by gear type, 1964-1992.

1980). Initially, the two southern areas were analyzed separately. However, in light of the interchange between areas, a combined assessment for the southern areas was also attempted.

Some exchange of lobsters occurs among the Gulf of Maine and GBS-O stocks units based on movement of tagged lobsters northward from outer Cape Cod. However, on balance, the proposed division of stock units separates the bulk of animals with divergent population dynamics parameters, and defines predominant nearshore fisheries (Gulf of Maine) from predominant offshore fisheries (Georges Bank and South).

# DESCRIPTION OF THE FISHERY

Total lobster landings increased steadily from the mid-1960s to early 1990s (Table D1; Figure D2). Landings peaked at 29,089 mt in 1991 and declined 13% in 1992, to 25,329 mt. Landings declined in 1992 (based on preliminary NMFS annual canvass statistics) in all major lobsterproducing states: Maine:- 13%; Massachusetts: -8%; Rhode Island: -9%; and all other states: -25%. Reductions in lobster landings in 1992 are probably related to reduced resource availability (either due to lower stock abundance or reduced catchability), since LPUE declined in many areas (see section on stock abundance, page 81), while total effort increased. Similarly, a number of autumn research vessel trawl survey indices declined in 1992, coincident with the decline in landings and LPUE.

Landings by gear type are plotted in Figure D3. Inshore pots account for the predominance of landings (86% in 1992), with offshore pots (13%) accounting for the bulk of the remainder. Trawl landings of lobster accounted for less than one percent of 1992 landings, but in previous years trawls generated higher proportions of reported landings. Trawl landings represented a significant fraction of the fishery in the during the 1960s. The offshore pot fishery developed beginning in 1971. This segment of the fishery has exhibited relatively stable landings, while in-

shore pots have shown dramatically increasing landings since 1974 (a near doubling of inshore pot landings).

Trends in annual landings for the three nominal assessment areas (1979 to 1992) are given in Figure D4 and Table D2. The Gulf of Maine assessment area accounted for an average of 65% of landings, while the GBS-O area contributed 21%, and the SCCLIS-I region generated an average of 14% of landings. In recent years a higher fraction of landings has been derived from the Gulf of Maine (71%) and a lower fraction from GBS-O.

Calculations involving the DeLury and length cohort population models (Conser and Idoine 1992; Jones 1974) require that catch in numbers be estimated quarterly for each assessment area. Since overflshing definitions for the resource currently involve only egg production per recruit calculations, we focused on estimating fishing mortality and stock sizes for females. Thus, catches in numbers only for the female component of the resource were estimated. Since autumn trawl surveys were used to calibrate DeLury stock depletion models, the annual landings were shifted to a 'survey year' basis. This procedure involved combining the Q4 landings of year i with Q1+Q2+Q3 of years i+1. Thus, for example, research vessel survey data for autumn 1991 and autumn 1992 were calibrated to landings in numbers for Q4 of 1991 and Q1+Q2+Q3 of 1992.

Catches in numbers and weight for female lobsters by survey year and assessment area are given in Table D3. These estimates are based on catches expanded by sex and size from appropriate port and sea sampling. Estimation of catch numbers was problematical for all assessment areas, owing to the very uneven catch sampling for size composition and sex ratios among the states and NMFS. Catch numbers for inshore areas of the Gulf of Maine were estimated separately for Maine and Massachusetts. New Hampshire inshore catch in numbers was estimated assuming size and sex ratio data for Massachusetts catches in statistical area 514 were applicable. Offshore catches for the Gulf of Maine (area 515) were expanded based on Canadian sea sampling data from the Crowell Basin area, because of the lack of appropriate U.S. sampling data.

Catch numbers for the GBS-O area were expanded from NMFS commercial sampling data (1979 to 1990). Rhode Island offshore sea sampling data were used for 1991 and 1992. Catch in numbers for the SCCLIS-I area were estimated from Connecticut, Rhode Island, and Massachu-

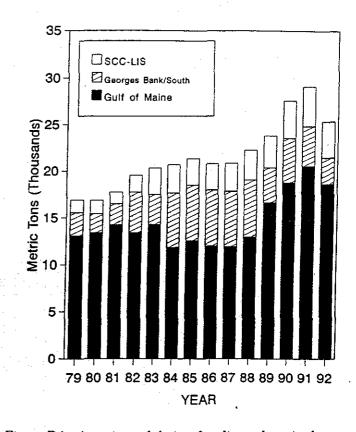



Figure D4. American lobster landings by stock assessment area, 1979-1992.

 
 Table D2.
 Landings (metric tons) of American lobster by assessment area, 1979-1992<sup>1</sup>

| <u> Үевг</u> | Gulf of Maine | GBS-O            | SCCLIS-I |
|--------------|---------------|------------------|----------|
| 1979         | 13065.591     | 2489.013         | 1357.782 |
| 1980         | 13404.982     | 2020.271         | 1455.244 |
| 1981         | 14241.436     | 2256.589         | 1252.477 |
| 1982         | 13418.038     | 4330.99 <b>3</b> | 1794.007 |
| 1983         | 14317.816     | 3196.447         | 2815.072 |
| 1984         | 11854.116     | 5824.708         | 2989.652 |
| 1985         | 12579.900     | 5925.656         | 2811.095 |
| 1986         | 11996.198     | 5999.249         | 2787.144 |
| 1987         | 11932.364     | 5926.847         | 2966.545 |
| 1988         | 12949.185     | 6128.339         | 3158.039 |
| 1989         | 16654.892     | 3691.004         | 3430.047 |
| 1990         | 18782.806     | 4714.370         | 4085.390 |
| 1991         | 20531.931     | 4274.615         | 4282.077 |
| 1992         | 18649.506     | 2782.533         | 3897.305 |

GBS-0 - Georges Bank and South-Offshore assessment area

SCCLIS-I - South of Cape Cod to Long Island Sound-Inshore assessment area

| Year | Gulf of Maine |      | GBS-O  |      | SCCLIS-I |      |
|------|---------------|------|--------|------|----------|------|
|      | Number        | mt   | Number | mt   | Number   | mt   |
| 1979 | · -           |      | 0.95   | 690  | 1.79     | 981  |
| 1980 | 12.28         | 6765 | 1.09   | 1203 | 1.39     | 758  |
| 1981 | 12.29         | 6875 | 1.42   | 1733 | 1.72     | 945  |
| 1982 | 12.52         | 6935 | 2.02   | 1493 | 3.21     | 1775 |
| 1983 | 10.74         | 5867 | 3.45   | 1997 | 3.44     | 1890 |
| 1984 | 12.40         | 6680 | 4.92   | 2575 | 3.49     | 1913 |
| 1985 | 12.83         | 6813 | 6.86   | 2611 | 3.48     | 1895 |
| 1986 | 11.36         | 6148 | 5.95   | 2865 | 3.40     | 1857 |
| 1987 | 11.43         | 6186 | 6.23   | 3036 | 3.54     | 1969 |
| 1988 | 13.63         | 7479 | 5.14   | 1900 | 4.10     | 2316 |
| 1989 | 14.90         | 8302 | 5.10   | 1707 | 4.48     | 2530 |
| 1990 | 17.10         | 9554 | 2.80   | 2399 | 4.75     | 2666 |
| 1991 | 14.57         | 8166 | 1.77   | 1559 | 4.47     | 2474 |

Table D3.Estimated landings of female lobsters in numbers (millions of lobsters) and weights (metric tons),<br/>by assessment area, for survey years 1979-1991 (Q4 year i + Q1, Q2, Q3 in year i+1)<sup>1</sup>

GBS-O - Georges Bank and South-Offshore assessment area

SCCLIS-I = South of Cape Cod to Long Island Sound-Inshore assessment area

setts size/sex ratio data. New York catches were expanded using Connecticut sampling. Similarly, Rhode Island landings prior to 1990 were not sampled for biological characteristics. Thus, Buzzards Bay (Massachusetts) sampling data were used to estimate numbers of females caught from total Rhode Island landings. For the GBS-O area, faster growth rates result in a prerecruit size group 14 mm below legal size:

| through 1987: | 67-80 mm CL |
|---------------|-------------|
| 1988:         | 68-81 mm CL |
| 1989-1992:    | 69-82 mm CL |

Indices are presented separately for pre-recruit and fully-recruited sizes.

# STOCK ABUNDANCE INDICES

#### **Research Vessel Trawl Survey Indices**

Indices of relative stock abundance were computed from various trawl survey time series developed by NEFSC and the states of Massachusetts, Rhode Island, and Connecticut. These data were used both as relative indices of stock abundance and as tuning indices for the DeLury population models. Indices were developed for two size categories from the data: (1) fully-recruited individuals (81 mm carapace prior to 1988, 82 mm CL in 1988, and 83 mm CL in 1988-1992), and (2) prerecruit indices. Prerecruits are defined as the molt group likely to become legal size during the 12-month period between successive surveys. In the case of surveys for the Gulf of Maine and SCCLIS-I areas, the prerecruit size group was 11 mm CL below the legal size:

| through 1987:                  | 70-80 mm CL |
|--------------------------------|-------------|
| 55. <b>1988:</b> 55. 55. 56. 5 | 71-81 mm CL |
| 1989-1992;                     | 72-82 mm CL |

Gulf of Maine Assessment Area

Indices of relative abundance for lobsters in the Gulf of Maine assessment area are available from two sources. The NEFSC bottom trawl survey series begins in 1963, however methods used for length determinations are inconsistent prior to 1970, and sex determinations for lobsters were not made prior to 1979 (Table D4; Figure D5). The survey is conducted with roller-rigged Yankee-36 bottom trawl. The predominance of stations is located in relatively deep waters, owing to the extremely rough bottom conditions in nearshore waters of the Gulf of Maine.

The relative abundance of lobsters in the NEFSC series increased substantially over the period 1970 to 1991 and especially since 1983. The relative abundance of both size classes of each sex declined substantially from 1991 to 1992, consistent with declines in regional CPUE.

The state of Massachusetts has conducted autumn bottom trawl surveys since 1978 (Table D5; Figure D6). Indices used for Gulf of Maine analyses were calculated from sampling con-

ducted north of Cape Cod. The surveys are conducted with the trawl sweep comprised of 3.5 in. 'cookies'; thus it is likely more efficient at sampling lobsters than the NEFSC sampling gear. Differences in mean sizes between the NEFSC and state of Massachusetts surveys are due to a combination of differences in gear selection and habitats sampled in the two programs. However, neither sampling gear is particularly effective in sampling hard bottom lobster habitats.

Abundance indices for both sexes and size groups increased throughout the late-1970s to the mid-1980s. Abundance declined between 1986 and 1988, and subsequently increased to time-series highs in 1990. Abundance has decreased sharply since 1990.

#### Georges Bank and South Offshore Assessment Area

The only trawl survey time series available for this region is the NEFSC offshore survey (Table D6; Figure D7). The entire region from Georges Bank to Cape Hatteras, with the exception of NEFSC offshore stratum 5 in coastal Rhode Island waters, was included in the strata set for analysis of this assessment area. Indices reported in SARC 14 included only Georges Bank and Southern New England. The addition of more southern strata results in lower apparent abundance of pre-recruits relative to fully-recruited animals, and has important implications for assessment results for this area.

The abundance of recruit-sized lobsters has varied without trend since the mid-1970s. Conversely, the abundance of prerecruits has increased steadily over the time period. Unlike the Gulf of Maine, abundance did not appreciably change between 1991 and 1992.

#### South of Cape Cod to Long Island Inshore Assessment Area

Two sets of trawl survey abundance indices are available for this area. The state of Rhode Island has conducted an inshore trawl survey since 1979 (Table D7; Figure D8). The survey is conducted in Narragansett Bay, and in Block Island and Rhode Island Sound waters. Survey gear is a three-quarter scale high-rise bottom trawl equipped with a 'cookie' sweep. Abundance indices for lobsters increased substantially since the early 1980s. The 1992 index for females was near the time-series high, while the index for males declined to a five-year low.

The State of Connecticut has conducted a trawl survey of Long Island Sound since 1986 (Table D8; Figure D9). Abundance indices for both sexes and size groups increased steadily since 1987, declines in prerecruit indices occurred between 1991 and 1992.

Although the State of Massachusetts bottom trawl survey extends west of Nantucket, survey catches are generally very small, and thus a reliable index of stock abundance for lobsters can not be calculated from these data.

#### Landings Per Unit of Effort Indices

A variety of effort and LPUE series are available from the individual states. Trends in total nominal fishing effort for Maine (numbers per trap haul), Massachusetts (numbers per trap haul), and New York (number of traps) and Connecticut (number of trap hauls) are given in Table D9. In all cases, nominal inshore effort has increased substantially in recent years.

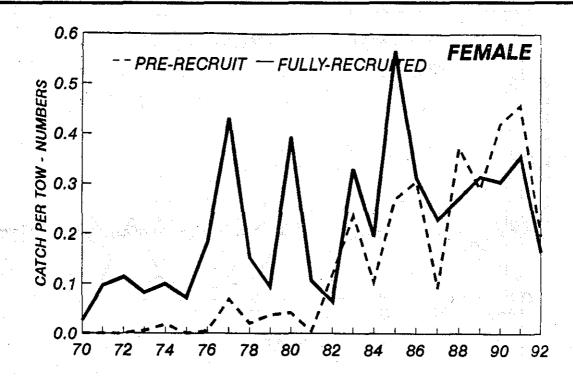
The LPUE series for the Gulf of Maine and SCCLIS-I assessment areas are given in Figures D10 and D11. The LPUE indices in the Gulf of Maine region generally increased from the mid-1980s until 1991. For both Maine and Massachusetts, LPUE declined dramatically in 1992. The LPUE indices for the southern inshore area have generally trended downward since the early 1980s. The only significant decline between 1991 and 1992 was for Rhode Island.

# ESTIMATES OF STOCK SIZE AND FISHING MORTALITY

Two alternative approaches to calculating stock sizes and fishing mortality rates have been used in previous assessments: DeLury population modeling, and length cohort analyses. Comparative analyses using both techniques were undertaken for the Gulf of Maine assessment area. Length cohort analyses (LCAs) were not undertaken for the two southern stock areas due to the lack of adequate time series data.

#### **DeLury Model Analyses**

A DeLury population estimation model for American lobster assessments was first intro-


 Table D4.
 Estimates of relative lobster stock abundance for the Gulf of Maine stock area from autumn NEFSC bottom trawl surveys in the Gulf of Maine, 1970-1992, delta-distributed mean catch-per-tow for females

|               |                   |             | and the state of the |                              | ay sheribeleer a cl                   | <u></u>                                                                                                            |
|---------------|-------------------|-------------|----------------------|------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|               | Year              | Numt        | ers                  | M                            | ean                                   |                                                                                                                    |
|               | ·                 | Prerecruits | Fully-Recruited      | Prerecruits                  | Fully-Recruited                       |                                                                                                                    |
|               | 1970 <sup>1</sup> |             | 0.026                | 000.0                        | 2590.1                                |                                                                                                                    |
|               | 1971              | 0.000       | 0.096                | 000.0                        | 1761.6                                |                                                                                                                    |
|               | 1972              | 0.000       | 0.113                | 000.0                        | 2065.9                                |                                                                                                                    |
|               | 1973              | 0.005       | 0.081                | 354.1                        | 1661.2                                |                                                                                                                    |
|               | 1974              | 0.018       | 0.099                | 354.1                        | 977.7                                 |                                                                                                                    |
|               | 1975              | 0.000       | 0.071                | 000.0                        | 979.6                                 |                                                                                                                    |
|               | 1976              | 0.005       | 0.183                | 347.6                        | 993.6                                 |                                                                                                                    |
|               | 1977              | 0.068       | 0.430                | 352.9                        | 992.6                                 |                                                                                                                    |
|               | 1978              | 0.020       | 0.152                | 345.8                        | 1171.4                                |                                                                                                                    |
| а.<br>1911 г. | 1979              | 0.038       | 0.094                | 350.8                        | 827.4                                 | tat tege par                                                                                                       |
|               | 1980              | 0.041       | 0.393                | 346.9                        | 815.4                                 |                                                                                                                    |
|               | 1981              | 0.004       | 0.106                | 347.6                        | 982.9                                 |                                                                                                                    |
|               | 1982              | 0.117       | 0.064                | 342.7                        | 739.6                                 |                                                                                                                    |
|               | 1983              | 0.236       | 0.330                | 356.6                        | 659.5                                 |                                                                                                                    |
|               | 1984              | 0.102       | 0.194                | 357.1                        | 908.8                                 |                                                                                                                    |
|               | 1985              | 0.269       | 0.567                | 353.8                        | 842.3                                 |                                                                                                                    |
|               | 1986              | 0.305       | 0.311                | 336.9                        | 683.8                                 |                                                                                                                    |
|               | 1987              | 0.091       | 0.228                | 351.9                        | 1015.7                                |                                                                                                                    |
|               | 1988²             | 0.373       | 0.270                | 374.3                        | 750.2                                 |                                                                                                                    |
|               | 1989 <sup>3</sup> | 0.289       | 0.314                | 368.0                        | 876.2                                 |                                                                                                                    |
|               | 1990              | 0.419       | 0.304                | 395.0                        | 758.3                                 | na se anna an t-<br>anna an t-anna |
|               | 1991              | 0.457       | 0.355                | 391.4                        | 717.3                                 |                                                                                                                    |
|               | 1992              | 0.196       | 0.164                | 368.7                        | 863.4                                 |                                                                                                                    |
| -             |                   |             |                      | and the second second second | · · · · · · · · · · · · · · · · · · · | - 1 1                                                                                                              |

Fully-recruited >81 mm carapace length, prerecruits = 70-80 mm (1970-1987)

<sup>4</sup> Fully-recruited ≥82 mm carapace length, prerecruits = 71-81 mm (1988)

<sup>3</sup> Fully-recruited ≥83 mm carapace length, prerecruits • 72-82 mm (1989-1992)



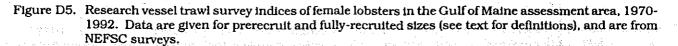



Table D5. Indices of relative lobster stock abundance for the Gulf of Maine stock area from Massachusetts autumn bottom trawl surveys north of Cape Cod. 1978-1992, delta-distributed mean catch-per-tow for females

| Year              | lear Numbers |                 | Mean Animal Weight (g) |                 |   |
|-------------------|--------------|-----------------|------------------------|-----------------|---|
|                   | Prerecruits  | Fully-Recruited | Prerecruits            | Fully-Recruited |   |
| 1978 <sup>1</sup> | 1.13         | 0.65            | 349.5                  | 586.7           |   |
| 1979              | 3.92         | 1.52            | 349.8                  | 585.4           |   |
| 1980              | 1.78         | 0.96            | 349.4                  | 586.4           |   |
| 1981              | 2.83         | 1.04            | 349.7                  | 585.0           | • |
| 1982              | 2.30         | 1.84            | 349.4                  | 567.5           |   |
| 1983              | 4.35         | 1.64            | 351.7                  | 573.0           |   |
| 1984              | 2.49         | 1.49            | 346.4                  | 585.0           | • |
| 1985              | 4.68         | 2.25            | 347.3                  | 579.1           |   |
| 1986              | 1.98         | 0.61            | 341.7                  | 543.3           |   |
| 1987              | 0.53         | 0.37            | 368.3                  | 662.6           |   |
| 198 <b>8</b> 2    | 1.26         | 0.29            | 349.5                  | 532.3           |   |
| 1989³             | 1.64         | 0.55            | 373.7                  | 577.8           |   |
| 1990              | 7.46         | 2.30            | 366.4                  | 560.6           |   |
| 1991              | 3.56         | 0.56            | 371.1                  | 527.0           |   |
| 1992              | 2.69         | 0.77            | 361.2                  | 583.7           |   |

<sup>1</sup>Fully-recruited ≥81 mm carapace length, prerecruits = 70-80 mm (1978-1987) <sup>2</sup>Fully-recruited ≥82 mm carapace length, prerecruits = 71-81 mm (1988) <sup>3</sup>Fully-recruited ≥83 mm carapace length, prerecruits = 72-82 mm (1989-1992)

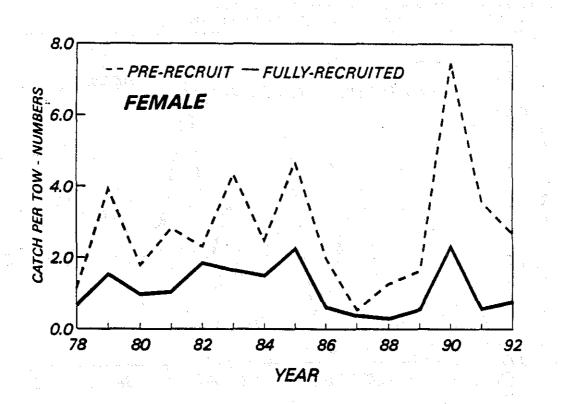



Figure D6. Research vessel trawl survey indices of female lobsters in the Gulf of Maine assessment area, 1978-1992. Data are given for prerecruit and fully-recruited sizes (see text for definitions), and are from State of Massachusetts surveys. Table D6. Indices of relative lobster stock abundance (mean-catch-per-tow of females) for the Georges Bank and South offshore stock area from NEFSC autumn bottom trawl surveys for Georges Bank and south, 1970-1992.

| Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a aga an ar an | Numbers         | Mean Ani    | mal Weight (g)  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------|-------------|-----------------|
| ing and a state of the state of | Prerecruits                                        | Fully-Recruited | Prerecruits | Fully-Recruited |
| 19 <b>7</b> 0 <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.036                                              | 0.424           | 300.2       | 1593.3          |
| 1971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.032                                              | 0.325           | 304.9       | 2493.3          |
| 1972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.115                                              | 0.688           | 307.0       | 1314.3          |
| 1973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.055                                              | 0.447           | 308.6       | 1947.2          |
| 1974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.055                                              | 0.197           | 290.2       | 1563.8          |
| 1975                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.093                                              | 0.284           | 298.0       | 1289.8          |
| 1976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.079                                              | 0.280           | 290.5       | 959.0           |
| 1977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.095                                              | 0.451           | 295.1       | 1249.2          |
| 1978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.078                                              | 0.318           | 307.2       | 1128.4          |
| 1979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.094                                              | 0.330           | 300.0       | 1102.2          |
| 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.082                                              | 0.317           | 289.2       | 1326.7          |
| 1981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.124                                              | 0.340           | 283.8       | 1077.6          |
| 1982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.131                                              | 0.359           | 293.9       | 1096.4          |
| 1983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.127                                              | 0.285           | 295.0       | 1177.4          |
| 1984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.119                                              | 0.322           | 310.1       | 825.4           |
| 1985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.173                                              | 0.249           | 305.1       | 1155.9          |
| 1986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.173                                              | 0.312           | 296.4       | 854.6           |
| 1987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.099                                              | 0.212           | 303.0       | 1033.0          |
| 1988 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.101                                              | 0.322           | 321.1       | 1024.5          |
| 1989 <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.169                                              | 0.330           | 312.8       | 1126.1          |
| 1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.213                                              | 0.347           | 309.9       | 945.8           |
| 1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.100                                              | 0.406           | 309.7       | 1137.2          |
| 1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.188                                              | 0.339           | 327.1       | 1175.1          |

 <sup>1</sup>Fully-recruited = ≥81 mm carapace length, preferruits = 67-80 mm (1970-1987)

 <sup>2</sup>Fully-recruited = ≥82 mm carapace length, preferruits = 68-81 mm (1988)

 <sup>3</sup>Fully-recruited = ≥83 mm carapace length, preferruits = 69-82 mm (1989-1992)

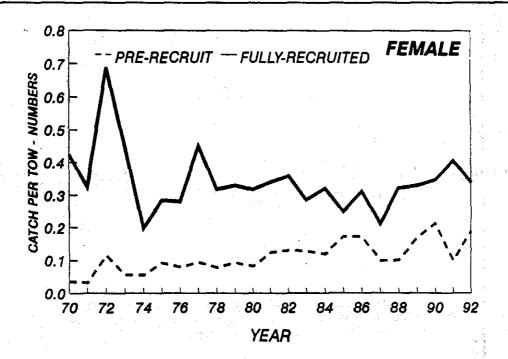



Figure D7. Research vessel trawl survey indices of female lobsters in the Georges Bank and South offshore assessment area, 1970-1992. Data are given for prerecruit and fully-recruited sizes (see text for definitions), and are from NEFSC surveys.

| Table D7. | Indices of relative lobster stock abundance for the South of Cape Cod-Long Island Sound Inshore  |
|-----------|--------------------------------------------------------------------------------------------------|
|           | stock area from Rhode Island bottom trawl surveys for 1979-1992, delta-distributed mean catches- |
|           | per-tow for females                                                                              |

| Year              | Nui         | nbers           | Mean Animal Weight (g) |                    |  |
|-------------------|-------------|-----------------|------------------------|--------------------|--|
|                   | Prerecruits | Fully-Recruited | Prerecruits            | Fully-Recruited    |  |
| 1979 <sup>1</sup> | 0.096       | 0.024           | 318.4                  | 475.3              |  |
| 1980              | 0.638       | 0.071           | 342.5                  | 611.7              |  |
| 1981              | 0.640       | 0.091           | 343.6                  | 488.1              |  |
| 1982              | 0.206       | 0.012           | 336.4                  | i i i <b>511.1</b> |  |
| 1983              | 0.290       | 0.094           | 360.4                  | 511.9              |  |
| 1984              | 0.491       | 0.212           | 350.2                  | 579.4              |  |
| 1985              | 0.631       | 0.015           | 346.0                  | 568.2              |  |
| 1986              | 0.400       | 0.037           | 342.4                  | 458.1              |  |
| 1987              | 1.527       | 0.330           | 338.8                  | 532.2              |  |
| 1988 <sup>2</sup> | 0.951       | 0.219           | 362.8                  | 607.5              |  |
| 1989 <sup>3</sup> | 1.383       | 0.285           | 353.4                  | 483.7              |  |
| 1990              | 1.102       | 0.155           | 374.7                  | 543.7              |  |
| 1991              | 0.768       | 0.193           | 367.4                  | 526.7              |  |
| 1992              | 1.328       | 0.251           | 400.4                  | 555.3              |  |

<sup>1</sup>Fully-recruited \_281 mm carapace length, prerecruits = 70-80 mm (1979-1987) <sup>2</sup>Fully-recruited ≥82 mm carapace length, prerecruits = 71-81 mm (1988)

<sup>3</sup>Fully-recruited ≥83 mm carapace length, prerecruits = 72-82 mm (1989-1992)

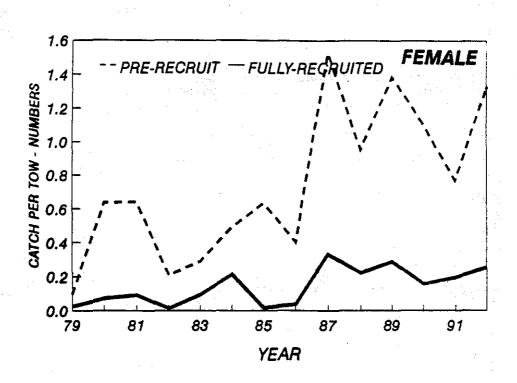



Figure D8. Research vessel trawl survey indices of female lobsters in the South Cape Cod-Long Island Sound inshore assessment area, 1979-1992. Data are given for prerecruit and fully-recruited sizes (see text for definitions), and are from State of Rhode Island surveys.

| Table D8. | Indices of relative lobster stock abundance for the South of Cape Cod-Long Island Sound inshore |
|-----------|-------------------------------------------------------------------------------------------------|
|           | stock area from Connecticut bottom trawl surveys of Long Island Sound, 1986-1992, geometric     |
|           | mean catch-per-tow for females                                                                  |

| Year                  | Numbers     |        | Mean Animal Weight (g) |                 |  |
|-----------------------|-------------|--------|------------------------|-----------------|--|
|                       | Prerecruits |        | Prerecruits            | Fully-Recruited |  |
| <br>1986 <sup>1</sup> | 1.2985      | 0.5363 | 371.7                  | 521.6           |  |
| 1987                  | 1.4280      | 0.5410 | 379.4                  | 516.1           |  |
| 1988 <sup>2</sup>     | 0.8879      | 0.4172 | 379.9                  | 545.5           |  |
| 1989 <sup>3</sup>     | 0.9289      | 0.2408 | 384.9                  | 507.7           |  |
| 1990                  | 1.3311      | 0.3932 | 384.4                  | 523.7           |  |
| 1991                  | 1.6775      | 0.3395 | 392.2                  | 511.5           |  |
| 1992                  | 1.3964      | 0.4540 | 396.8                  | 518.7           |  |

<sup>17</sup> Fully-recruited \_281 mm carapace length, prerecruits = 70-80 mm (1986-1987)

<sup>2</sup> Fully-recruited ≥82 mm carapace length, prerecruits = 71-81 mm (1988)

<sup>3</sup> Fully-recruited ≥83 mm carapace length, prefectuits = 72-82 mm (1989-1992)

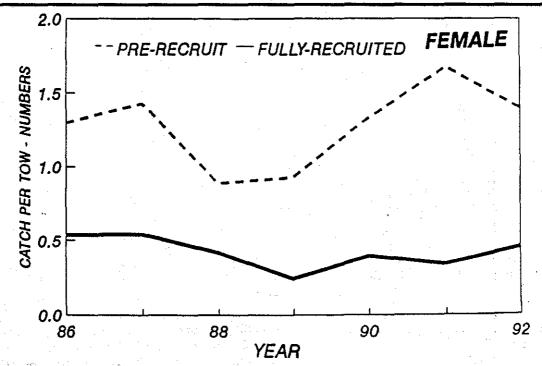



Figure D9. Research vessel trawl survey indices of female lobsters in the South Cape Cod-Long Island Sound inshore assessment area, 1986-1992. Data are given for prerecruit and fully-recruited sizes (see text for definitions), and are from State of Connecticut surveys.

duced at SARC 14 (Conser and Idoine 1992). This method utilizes a two life-stage model, with the population divided into prerecruits and fullyrecruited sizes. Research vessel bottom trawl survey indices and annual catch in numbers are used to estimate stock sizes and fishing mortality rates.

The DeLury model was fit to survey and landings data for the three stock areas. Trial runs for the Gulf of Maine region indicated that survey data for 1980 and later gave most consistent results, thus the analysis was not extended back in time. Two DeLury runs for the Gulf of Maine region evaluated the effects of assuming that selectivity of prerecruits was 1.0 and 0.5 of that of fully-recruited sizes (Tables D10 to D12). In the absence of data to firmly establish the relative selection of the two size groups, the two runs were combined using bootstrap techniques to generate a combined estimate of fishing mortality and stock size giving equal probability to the two sets of runs (Table D13; Figure D12). Bootstrap estimates of average fishing mortality rates for the last three years (1989 to 1991), as

| Year | Maine <sup>1</sup> | Massachusetts <sup>1</sup> | Connecticut <sup>2</sup> | New York                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------|--------------------|----------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1964 | 754                | 104.8                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1965 | 789                | 113.3                      |                          | and the second sec |
| 1966 | 776                | 120.9                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1967 | 715                | 130.7                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1968 | 747                | 141.7                      |                          | an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1969 | 805                | 141.5                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1970 | 1180               | 152.3                      | · · · · · ·              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1971 | 1278               | 162.3                      | ·                        | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1972 | 1448               | 175.6                      |                          | ang kanalan sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1973 | 1172               | 169.7                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1974 | 1790               | 157.0                      |                          | and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1975 | 1771               | 211.1                      |                          | 21 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1976 | 1754               | 222.3                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1977 | 1739               | 218.0                      |                          | 19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1978 | 1723               | 257.5                      |                          | 20.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1979 | 1810               | 291.5                      | 1192                     | 18.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1980 | 1846               | 278.1                      | 1277                     | 21.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1981 | . 1825             | 299.4                      | 1178                     | 24.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1982 | 2143               | 319.1                      | 1000                     | 23.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1983 | 2340               | 334.9                      | 1627                     | 31.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1984 | 2175               | 354.9                      | 1973                     | 44.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1985 | 1766               | 375.2                      | 1859                     | 51.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1986 | 1595               | 399.8                      | 1737                     | 44.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1987 | 1909               | 427.0                      | 2066                     | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1988 | 2053               | 433.4                      | 2294                     | 57.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1989 | 2001               | 430.5                      | 2583                     | 60.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1990 | 2094               | 385.2                      | 3069                     | 73.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1991 | 2015               | 398.0                      | 3009                     | 83.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1992 | 2000               | N/A                        | 3200                     | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table D9. Trends in total pot fishing effort (numbers of traps. in thousands), by state, 1964-1992

<sup>1</sup> Data for 1992 for Maine and Massachusetts are preliminary.

<sup>2</sup> Connecticut data expressed in trap hauls

| Table D10. | Indices of prerecruit and fully-recruited stock size (numbers per tow from NMFS    |
|------------|------------------------------------------------------------------------------------|
|            | autumn bottom trawl surveys) and total<br>landings (millions) in the Gulf of Maine |
|            | assessment area by survey years (Q4<br>year i + Q1, Q2, Q3 of year i+1)            |

| Survey             | Indices                  | Total  |           |
|--------------------|--------------------------|--------|-----------|
| Year               | Recruits Fully-Recruited |        | Landings  |
| 1980               | 0.0410                   | 0.3930 | 12.288031 |
| 1981               | 0.0040                   | 0.1060 | 12.286778 |
| 1982               | 0.1170                   | 0.0640 | 12.520628 |
| 1983               | 0.2360                   | 0.3300 | 10.745529 |
| 1984               | 0.1020                   | 0.1940 | 12.401634 |
| 1985               | 0.2690                   | 0.5670 | 12.832394 |
| 1986               | 0.3050                   | 0.3110 | 11.362626 |
| 1987               | 0.0910                   | 0.2280 | 11.430961 |
| 1988               | 0.3730                   | 0.2700 | 13.633450 |
| 1989               | 0.2890                   | 0.3140 | 14.903986 |
| 1990               | 0.4190                   | 0.3040 | 17.100721 |
| 1 <b>991</b> · · · | 0.4570                   | 0.3550 | 14.572636 |
| 1992               | 0.1960                   | 0.1640 |           |

well as distribution statistics are given in Table D14 and Figure D13.

Fishing mortality rates increased 45% from 1983 to 1991 (Table D13; Figure D12). The average fishing mortality rate for the stock for 1989 to 1991 is computed to be 0.65 (Table D14). Distribution statistics around this point indicate 80% CIs of 0.47 to 0.87. There is a 78% probability that F exceeds the  $F_{10\%}$  EPR level of 0.52 (Figure D13).

Trial DeLury runs were made for the GBS-O assessment area assuming selectivity of prerecruits at 1.0 and 0.5 of that for fullyrecruited animals (Tables D15 to D17). These runs indicated very low fishing mortality rates, particularly in light of SARC 14 results indicating an average F of 0.69 for the Georges Bank and Southern New England offshore region. These revised results included survey indices from Georges Bank through Cape Hatteras. When this larger survey area is included, the ratio of prerecruits to fully-recruited numbers per tow declines significantly, perhaps indicating a dearth

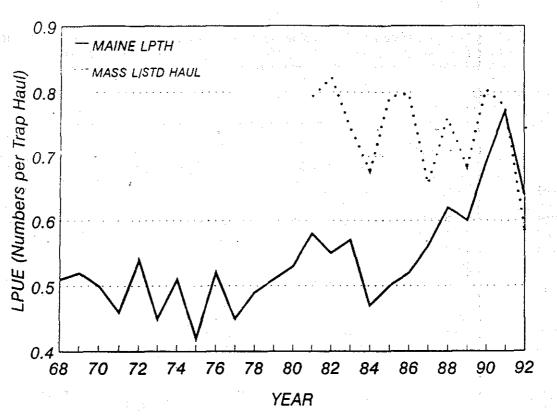
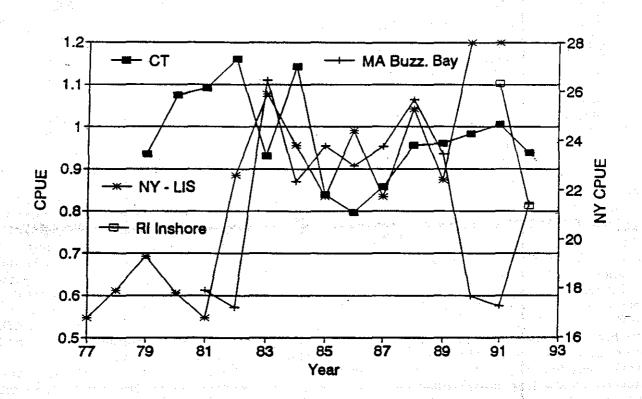




Figure D10. Landings per unit effort (LPUE) for Gulf of Maine lobster populations. Data are catch per trap haul (Maine) and catch per standardized haul (Massachusetts.)



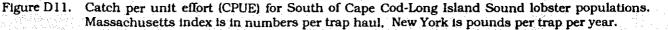



 Table D11.
 Estimates of stock size (numbers) fishing and total mortality rates and biomasses of Gulf of Maine lobster (females), based on DeLury model run assuming selectivity of prerecruits and fully-recruited animals to NMFS survey gear is equal

| Survey<br>Year                                                                                         |                                                                                        |                                                                                                                                 | F<br>on Size<br>1+                                                                                         | F<br>on Size<br>1                                                                                | F<br>on Sizes<br>2+                                                                                        |  |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|
| 1980                                                                                                   | 3.394                                                                                  | 28.880                                                                                                                          | 0.50                                                                                                       | 0.16                                                                                             | 0.54                                                                                                       |  |
| 1981                                                                                                   | 0.340                                                                                  | 17.664                                                                                                                          | 1.10                                                                                                       | 0.33                                                                                             | 1.11                                                                                                       |  |
| 1982                                                                                                   | 22.767                                                                                 | 5.429                                                                                                                           | 0.44                                                                                                       | 0.30                                                                                             | 1.02                                                                                                       |  |
| 1983                                                                                                   | 21.268                                                                                 | 16.395                                                                                                                          | 0.31                                                                                                       | 0.15                                                                                             | 0.52                                                                                                       |  |
| 1984                                                                                                   | 10.685                                                                                 | 24.893                                                                                                                          | 0.31                                                                                                       | 0.12                                                                                             | 0.39                                                                                                       |  |
| 1985                                                                                                   | 18.863                                                                                 | 23.616                                                                                                                          | 0.43                                                                                                       | 0.19                                                                                             | 0.63                                                                                                       |  |
| 1986                                                                                                   | 19.737                                                                                 | 24.975                                                                                                                          | 0.40                                                                                                       | 0.17                                                                                             | 0.59                                                                                                       |  |
| 1987                                                                                                   | 7.444                                                                                  | 27.011                                                                                                                          | 0.42                                                                                                       | 0.15                                                                                             | 0.50                                                                                                       |  |
| 1988                                                                                                   | 24.800                                                                                 | 20.390                                                                                                                          | 0.43                                                                                                       | 0.21                                                                                             | 0.71                                                                                                       |  |
| 1989                                                                                                   | 19.537                                                                                 | 26.494                                                                                                                          | 0.48                                                                                                       | 0.20                                                                                             | 0.68                                                                                                       |  |
| 1990                                                                                                   | 25.287                                                                                 | 25.814                                                                                                                          | 0.52                                                                                                       | 0.24                                                                                             | 0.80                                                                                                       |  |
| 1991                                                                                                   | 24.204                                                                                 | 27.512                                                                                                                          | 0.51                                                                                                       | 0.23                                                                                             | 0.76                                                                                                       |  |
| 1992                                                                                                   | 16.486                                                                                 | 28.125                                                                                                                          |                                                                                                            |                                                                                                  |                                                                                                            |  |
| 1992                                                                                                   | 10.400                                                                                 | 20.120                                                                                                                          |                                                                                                            |                                                                                                  |                                                                                                            |  |
| Survey                                                                                                 | 10.480                                                                                 |                                                                                                                                 | es (mt, Oct. 1)                                                                                            | · · · · ·                                                                                        | Catch Biomas                                                                                               |  |
|                                                                                                        | Recruits                                                                               | Biomass Estimat                                                                                                                 | es (mt, Oct. 1)<br>Total                                                                                   | Exploited                                                                                        | Catch Biomas<br>During Survey                                                                              |  |
| Survey                                                                                                 |                                                                                        | Biomass Estimat                                                                                                                 |                                                                                                            | Exploited<br>Biomass                                                                             |                                                                                                            |  |
| Survey                                                                                                 |                                                                                        | Biomass Estimat<br>Fully-                                                                                                       | Total                                                                                                      |                                                                                                  | During Survey                                                                                              |  |
| Survey<br>Year                                                                                         | Recruits                                                                               | Biomass Estimat<br>Fully-<br>Recruited                                                                                          | Total<br>Biomass                                                                                           | Biomass                                                                                          | During Survey<br>Year (mt)                                                                                 |  |
| Survey<br>Year<br>1980                                                                                 | Recruits                                                                               | Biomass Estimat<br>Fully-<br>Recruited<br>23548                                                                                 | Total<br>Biomass<br>24726                                                                                  | Biomass<br>23898                                                                                 | During Survey<br>Year (mt)<br>6765                                                                         |  |
| <b>Survey</b><br>Year<br>1980<br>1981                                                                  | <b>Recruits</b><br>1177<br>118                                                         | Biomass Estimat<br>Fully-<br>Recruited<br>23548<br>17362                                                                        | Total<br>Biomass<br>24726<br>17480                                                                         | Biomass<br>23898<br>17397                                                                        | During Survey<br>Year (mt)<br>6765<br>6875                                                                 |  |
| Survey<br>Year<br>1980<br>1981<br>1982                                                                 | <b>Recruits</b><br>1177<br>118<br>7802                                                 | Biomass Estimat<br>Fully-<br>Recruited<br>23548<br>17362<br>4015                                                                | Total<br>Biomass<br>24726<br>17480<br>11818                                                                | Biomass<br>23898<br>17397<br>6330                                                                | During Survey<br>Year (mt)<br>6765<br>6875<br>6935                                                         |  |
| Survey<br>Year<br>1980<br>1981<br>1982<br>1983                                                         | <b>Recruits</b><br>1177<br>118<br>7802<br>7584                                         | Biomass Estimat<br>Fully-<br>Recruited<br>23548<br>17362<br>4015<br>10813                                                       | Total<br>Biomass<br>24726<br>17480<br>11818<br>18397                                                       | Biomass<br>23898<br>17397<br>6330<br>13062                                                       | During Survey<br>Year (mt)<br>6765<br>6875<br>6935<br>5867                                                 |  |
| Survey<br>Year<br>1980<br>1981<br>1982<br>1983<br>1984                                                 | <b>Recruits</b><br>1177<br>118<br>7802<br>7584<br>3816                                 | Biomass Estimat<br>Fully-<br>Recruited<br>23548<br>17362<br>4015<br>10813<br>22623                                              | Total<br>Biomass<br>24726<br>17480<br>11818<br>18397<br>26438                                              | Biomass<br>23898<br>17397<br>6330<br>13062<br>23754                                              | During Survey<br>Year (mt)<br>6765<br>6875<br>6935<br>5867<br>6680                                         |  |
| Survey<br>Year<br>1980<br>1981<br>1982<br>1983<br>1984<br>1985                                         | <b>Recruits</b><br>1177<br>118<br>7802<br>7584<br>3816<br>6674                         | Biomass Estimat<br>Fully-<br>Recruited<br>23548<br>17362<br>4015<br>10813<br>22623<br>19892                                     | Total<br>Biomass<br>24726<br>17480<br>11818<br>18397<br>26438<br>26565                                     | Biomass<br>23898<br>17397<br>6330<br>13062<br>23754<br>21871                                     | During Survey<br>Year (mt)<br>6765<br>6875<br>6935<br>5867<br>6680<br>6813                                 |  |
| Survey<br>Year<br>1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986                                 | <b>Recruits</b><br>1177<br>118<br>7802<br>7584<br>3816<br>6674<br>6650                 | Biomass Estimat<br>Fully-<br>Recruited<br>23548<br>17362<br>4015<br>10813<br>22623<br>19892<br>17078                            | Total<br>Biomass<br>24726<br>17480<br>11818<br>18397<br>26438<br>26565<br>23727                            | Biomass<br>23898<br>17397<br>6330<br>13062<br>23754<br>21871<br>19050                            | During Survey<br>Year (mt)<br>6765<br>6875<br>6935<br>5867<br>6680<br>6813<br>6148                         |  |
| Survey<br>Year<br>1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1986<br>1987                 | <b>Recruits</b><br>1177<br>118<br>7802<br>7584<br>3816<br>6674<br>6650<br>2620         | Biomass Estimat<br>Fully-<br>Recruited<br>23548<br>17362<br>4015<br>10813<br>22623<br>19892<br>17078<br>27435                   | Total<br>Biomass<br>24726<br>17480<br>11818<br>18397<br>26438<br>26565<br>23727<br>30055                   | Biomass<br>23898<br>17397<br>6330<br>13062<br>23754<br>21871<br>19050<br>28213                   | During Survey<br>Year (mt)<br>6765<br>6875<br>6935<br>5867<br>6680<br>6813<br>6148<br>6186                 |  |
| Survey<br>Year<br>1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1988<br>1989 | Recruits 1177 118 7802 7584 3816 6674 6650 2620 9283 7189                              | Biomass Estimat<br>Fully-<br>Recruited<br>23548<br>17362<br>4015<br>10813<br>22623<br>19892<br>17078<br>27435<br>15297<br>23214 | Total<br>Biomass<br>24726<br>17480<br>11818<br>18397<br>26438<br>26565<br>23727<br>30055<br>24580<br>30403 | Biomass<br>23898<br>17397<br>6330<br>13062<br>23754<br>21871<br>19050<br>28213<br>18051<br>25347 | During Survey<br>Year (mt)<br>6765<br>6875<br>6935<br>5867<br>6680<br>6813<br>6148<br>6186<br>7479<br>8302 |  |
| Survey<br>Year<br>1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988                 | <b>Recruits</b><br>1177<br>118<br>7802<br>7584<br>3816<br>6674<br>6650<br>2620<br>9283 | Biomass Estimat<br>Fully-<br>Recruited<br>23548<br>17362<br>4015<br>10813<br>22623<br>19892<br>17078<br>27435<br>15297          | Total<br>Biomass<br>24726<br>17480<br>11818<br>18397<br>26438<br>26565<br>23727<br>30055<br>24580          | Biomass<br>23898<br>17397<br>6330<br>13062<br>23754<br>21871<br>19050<br>28213<br>18051          | During Survey<br>Year (mt)<br>6765<br>6875<br>6935<br>5867<br>6680<br>6813<br>6148<br>6186<br>7479         |  |

Recruits =Size Class 1 Fully-Recruited =Size Class 2+

of prerecruits in survey tows from Hudson Canyon south. The result of this change is that fullyrecruited stock sizes are increased, and Fs decline. Based on the average of the two current DeLury runs, average Fs for the last three years are about 0.3. These estimates should be considered tentative, given the difficulty in resolving the spatial components of this offshore area. The bulk of the GBS-O landings come from a restricted portion of this area. If semidiscrete stock units exist, for example in southern canyon areas, there is a danger that the smaller stock units could experience substantially higher mortality rates than expressed in the overall analysis. Fishing mortality rates calculated at SARC 14 for Georges Bank and Southern New England offshore are consistent with an hypothesis of smaller

stock units. In the absence of definitive stock identification studies, a cautious approach to exploiting the offshore region is warranted.

DeLury runs for the SCCLIS-I, using the Rhode Island trawl survey indices, assumed equal selectivity of prerecruits and fully-recruited sizes (Tables D18 and D19). Total apparent fishing mortality rates were very high for this assessment area (average F for 1989 to 1991 = 1.47), reflecting the intensive nearshore fishery, and emigration to offshore waters.

Survey indices and landings data were combined in several DeLury runs to examine the implications for an integrated inshore/offshore assessment (as in the case of the Gulf of Maine area). Three runs of the combined assessment were: (1) combined landings, and the NEFSC

# Table D12.

2. Estimates of stock size (numbers), fishing and total mortality rates, and biomasses of Gulf of Maine lobster (females), based on DeLury model run assuming selectivity of preprecruits equal to 0.5 that of fully-recruited animals to NMFS survey gear.

#### Recruits =Size Class 1 Fully-Recruited =Size Class 2+

| Survey<br>Year | (millie  | ze Estimates<br>ons-Oct 1) | F<br>on Size    | F<br>on Size | F<br>on Sizes |  |
|----------------|----------|----------------------------|-----------------|--------------|---------------|--|
| <u> </u>       | Recruits | Fully-Recruited            | 1+              | 1            | 2+            |  |
| 1000           | 0 500    | 00 504                     | o <b>5</b> 4    | 0.10         | 0.00          |  |
| 1980           | 3.593    | 23.594                     | 0.54            | 0.18         | 0.60          |  |
| 1981           | 0.343    | 14.300                     | 1.77            | 0.53         | 1.80          |  |
| 1982           | 19.472   | 2.262                      | 0.78            | 0.62         | 2.10          |  |
| 1983           | 16.896   | 9.058                      | 0.57            | 0.31         | 1.05          |  |
| 1984           | 11.743   | 13.319                     | 0.59            | 0.26         | 0.89          |  |
| 1985           | 15.818   | 12.524                     | 0.69            | 0.34         | 1.13          |  |
| 1986           | 16.497   | 12.904                     | 0.60            | 0.30         | 1.00          |  |
| 1987           | 7,402    | 14.528                     | 0.84            | 0.29         | 0.97          |  |
| 1988           | 20.394   | 9.442                      | 0.69            | 0.40         | 1.34          |  |
| 1989           | 16.677   | 13.497                     | 0.76            | 0.37         | 1.25          |  |
| 1990           | 20.657   | 12.718                     | 0.82            | 0.43         | 1.45          |  |
| 1991           | 18.537   | 13.289                     | 0.78            | 0.39         | 1.32          |  |
| 1992           | 16.221   | 13.216                     |                 |              |               |  |
| Survey         |          | <b>Biomass Estimat</b>     | es (mt, Oct. 1) |              | Catch Biomass |  |
| Year           | Recruits | Fully-                     | Total           | Exploited    | During Survey |  |
| . * :          |          | Recruited                  | Biomass         | Biomass      | Year (mt)     |  |
| 1980           | 1246     | 19239                      | 20485           | 19609        | 6765          |  |
| 1981           | 119      | 14055                      | 14174           | 14091        | 6875          |  |
| 1982           | 6673     | 1673                       | 8346            | 3652         | 6935          |  |
| 1983           | 6025     | 5974                       | 11999           | 7761         | 5867          |  |
| 1984           | 4193     | 12104                      | 16297           | 13348        | 6680          |  |
| 1985           | 5596     | 10549                      | 16145           | 12209        | 6813          |  |
| 1986           | 5558     | 8823                       | 14381           | 10472        | 6148          |  |
| 1987           | 2605     | 14756                      | 17361           | 15529        | 6186          |  |
| 1988           | 7633     | 7083                       | 14717           | 9348         | 7479          |  |
| 1989           | 6137     | 11826                      | 17963           | 13647        | 8302          |  |
| 1989           | 8160     | 9644                       | 17803           | 12064        | 9554          |  |
| 1990           | 7256     | 9532                       | 16788           | 11685        | 8166          |  |
|                |          |                            |                 |              | 0100          |  |
| 1992           | 5981     | 11411                      | 17391           | 13185        |               |  |
| 1992           | 0901     | . 11411                    | 17591           | 19109        |               |  |

offshore survey indices; assuming equal selectivity of the two size classes; (2) combined landings and the NEFSC offshore survey indices, assuming selectivity of prerecruits is 0.5 that of fullyrecruited sizes; and (3) combined landings and Rhode Island survey indices. Results of these runs were intermediate to the area-separate analyses. Fishing mortality rates were higher than when NMFS survey indices were used for the offshore area alone, and lower than if the Rhode Island survey is applied only to inshore landings. Each survey is indexing a segment of the population, and more analysis of the results is required to interpret the merits of each approach. Interestingly, both the Rhode Island and NMFS surveys index recruitment at approximately the same levels, however fully-recruited stock sizes

are higher in the case of the NMFS survey used as a tuning index; and fishing mortality rate estimates are unrealistically high (likely due to emigration). Thus, DeLury results should be interpreted cautiously. More effort devoted to integrated inshore/offshore assessments of the southern region is clearly needed.

#### Length-Cohort Analyses

Lobster landings from the Gulf of Maine assessment area (Maine, New Hampshire, and Massachusetts) and biological information (*e.g.* sex ratios, size frequencies, and weights) from commercial sampling in Canada, Maine, and Massachusetts were used to estimate 1981 to

#### Table D13.

Estimates of the fishing mortality rate (F) for all legal-sized female lobsters in the Gulf of Maine assessment area, based on bootstrap combinations of DeLury runs assuming selectivity of prerecruit-sized lobsters to NMFS survey gear = 1.0 and 0.5 that of fully-recruited sizes (equal probability)<sup>1</sup>

| Survey<br>Year | DeLur<br>Estima  | •        | Bootstrap<br>Std. Error |            | CV for<br>DeLury SOLN |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
|----------------|------------------|----------|-------------------------|------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1980           | 0.5220           | 3        | 0.0535                  |            | 0.10                  | i de Norden en la composición de la composición |         |
| 1981           | 1.4333           | 3        | 0.3948                  |            | 0.28                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| 1982           | 0.6082           | 7        | 0.2061                  |            | 0.34                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| 1983           | 0.4406           | 3        | 0.1334                  |            | 0.30                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| 1984           | 0.4518           | 8        | 0.1594                  |            | 0.35                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| 1985           | 0.5590           | 0        | 0.1379                  |            | 0.25                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| 1986           | 0.5045           | 5        | 0.1188                  |            | 0.24                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| 1987           | 0.5837           | 7        | 0.2219                  |            | 0.38                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| 1988           | 0.5636           | 3        | 0.1849                  |            | 0.33                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| 1989           | 0.6212           | 2 .      | 0.1940                  |            | 0.31                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| 1990           | 0.6700           | <b>)</b> | 0.2034                  |            | 0.30                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| 1991           | 0.6440           | )        | 0.2015                  |            | 0.31                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| Survey         | Minimum          |          |                         | Percentile | 8                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Maximum |
| Year           |                  | 10       | 25                      | Median     | 75                    | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
| 1980           | 0.3184           | 0.4517   | 0.4906                  | 0.5263     | 0.5594                | 0.5841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.6347  |
| 1981           | 0.5430           | 0.9661   | 1.1425                  | 1.4299     | 1.6448                | 1.9346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.5665  |
| 1982           | 0.2083           | 0.3602   | 0.4582                  | 0.5946     | 0.7237                | 0.8703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.6168  |
| 1983           | 0.1550           | 0.2836   | 0.3460                  | 0.4178     | 0.5180                | 0.6245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9257  |
| 1984           | 0.1198           | 0.2484   | 0.3387                  | 0.4389     | 0.5447                | 0.6698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0841  |
| 1985           | 0.2773           | 0.3984   | 0.4604                  | 0.5458     | 0.6402                | 0.7268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.1511  |
| 1986           | 0.2611           | 0.3684   | 0.4107                  | 0.4911     | 0.5754                | 0.6724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9225  |
| 1987           | 0.1384           | 0.3427   | 0.4414                  | 0.5557     | 0.7010                | 0.8834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.7270  |
| 1988           | 0.2112           | 0.3622   | 0.4421                  | 0,5497     | 0.6469                | 0.7839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2979  |
| 1989           | 0.0793           | 0.3862   | 0.4870                  | 0.6143     | 0.7372                | 0.8498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.3022  |
|                | 0.0704           | 0.4348   | 0.5284                  | 0.6395     | 0.7833                | 0.8921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5413  |
| 1990           | 0.2794<br>0.1505 | 0.4040   | 0.0201                  | 0,0000     | 011.000               | 0.000-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |

<sup>1</sup>Number of bootstrap replications is 200. The distribution of bootstrap estimates of annual Fs are given intable.

1992 total landings of females by size for a series of modified length-based cohort analyses for the Gulf of Maine (statistical areas 511 to 515, Figure D1).

Port sampling data from eastern, central, and western Maine regions (cluster sampling methodology described by Krouse *et al.* 1991) were used to describe landings from statistical areas 511, 512, and 513, respectively. Biological estimates from the fourth quarter of the previous year were used to characterize first quarter landings. Monthly sea sampling data from Cape Ann, Beyerly/Salem, Boston Harbor, and Cape Cod Bay (sampling design reported by Estrella and Cadrin 1992) were used to describe area 514 landings.

Maine and Massachusetts commercial lobster sampling did not adequately sample offshore lobster and there were only a few recent NMFS sea sampling trips in the Gulf of Maine. Therefore, area 515 landings were characterized by four sea sampling trips conducted by Canada Department of Fisheries and Oceans in Crowell Basin (D. Pezzack, personal communication).<sup>1</sup> Landings for 1981 to 1983 were described by a 1982 trip, 1984 to 1985 landings by a 1985 trip, 1986 to 1987 by a 1987 trip, and 1989 to 1992 by a 1991 trip.

A key assumption in the application of lengthbased estimators of mortality is a stable size structure. Interannual variations in growth rates, recruitment, and fishery management measures all result in departures from a stable age and size structure. Somerton and Kobayashi (1990) illustrated potential pitfalls in length-based models and recommended use of a three-year running average to approximate stability in length frequencies. A truly stable structure probably never exists, but the relevant issues are the magnitude of the departures, their implications for mortality estimation, and the detectability of nonstable size structures. Statistical detectabil-

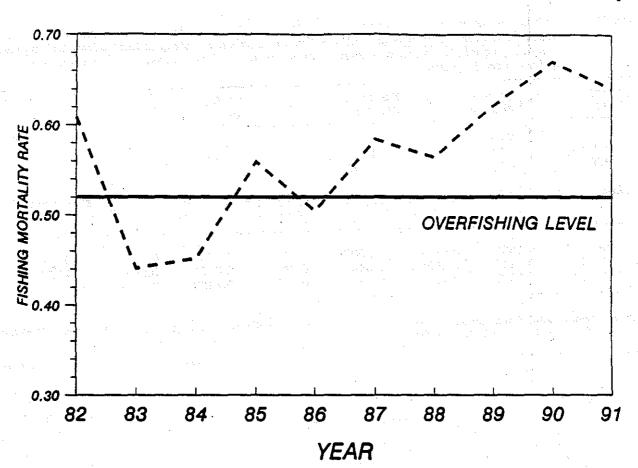



Figure D12. Calculated fishing mortality rates for female American lobster for the Gulf of Maine assessment area, 1982-1991. Results are from combined analyses assuming the relative selectivity of prerecruit-sized lobsters is 1.0 and 0.5 that of fully-recruited sizes.

ity of interannual changes in length frequencies was examined for the Gulf of Maine landings for 1981 to 1992.

Length frequencies of the catch are estimated from sample data appropriately weighted by catches in the sampling stratum. Annual catches were summarized in 5 mm intervals with the minimum size determined by the minimum legal size. Legal minimum carapace lengths were 81 mm from 1981 to 1987, 81.8 mm in 1988, and 82.6 mm since then. Total catches ranged from 1.2 to 1.8 million lobsters over this period. Usual goodness of fit tests based on contingency tables or cumulative density functions were considered inappropriate measures of statistical significance. Catch estimates by length class are not independent and the large number of "observations" in such a comparison ensures statistical significance, irrespective of the true state of nature.

Measures of central tendency and dispersion of the annual length frequencies exhibit no ap-

parent temporal trend. Mean lengths decreased about 2 mm between 1981 and 1986, increased about .5 mm in 1987 and 1988, and declined again over 1989 to 1992. Changes in mean carapace length spanned a range of less than 2 mm over the past decade (Figure D.14). Standard deviation of catch lengths varied by less than 1.5 mm in the same period. Initial attempts to fit statistical distributions to annual length frequencies were not successful but more work is necessary. Parameterization of single or composite probability density function would permit examination of interannual changes in length frequencies. In view of the small changes in the 1981 to 1992 sample moments, such changes probably would have minor consequences for mortality estimation. High underlying rates of total mortality (>1) and within-year variations in growth into the fishable population would tend to dampen variations in prerecruit abundance.

In the absence of raw length sample data, the

| Table D14. | Calculation of average fishing mortality of all legal-sized female lobsters in the Gulf of Maine |
|------------|--------------------------------------------------------------------------------------------------|
| 4. T       | assessment area, for three combinations of years based on bootstrap estimates from DeLury runs   |
|            | assuming equal probability of selectivity of prerecruits to NMFS survey gear is 1.0 and 0.5 that |
|            | of fully-recruited sizes <sup>1</sup>                                                            |

| Survey<br>Year | DeLury<br>Estimate | · · · · · · · · · · · · · · · · · · · | Bootstrap<br>Std. Error                        |             | CV for<br>Lury SOLN | ·         | . : .   |
|----------------|--------------------|---------------------------------------|------------------------------------------------|-------------|---------------------|-----------|---------|
| 1991           | 0.6440             |                                       | 0.2015                                         |             | 0.31                |           | :       |
| 1990-91        | 0.6570             |                                       | 0.1745                                         |             | 0.27                |           |         |
| 1989-91        | 0.6451             |                                       | 0.1603                                         |             | 0.25                |           | :       |
| Survey         | Minimum            |                                       | a<br>An an | Percentiles |                     | . · · · · | Maximum |
| Year           |                    | 10                                    | 25                                             | Median      | 75                  | 90        |         |
| 1991           | 0.1505             | 0.4117                                | 0.5033                                         | 0.6183      | 0.7799              | 0.9026    | 1.3047  |
| 1990-91        | 0.2149             | 0.4536                                | 0.5445                                         | 0.6423      | 0.7570              | 0.8916    | 1.2176  |
| 1989-91        | 0.2078             | 0.4670                                | 0.5311                                         | 0.6374      | 0.7367              | 0.8742    | 1.1886  |

<sup>1</sup> Distributions of bootstrap estimates are given below. Estimates are given for the last year (1991), the last two years (1991 and 1990) and the last three years (1991, 1990 and 1989).

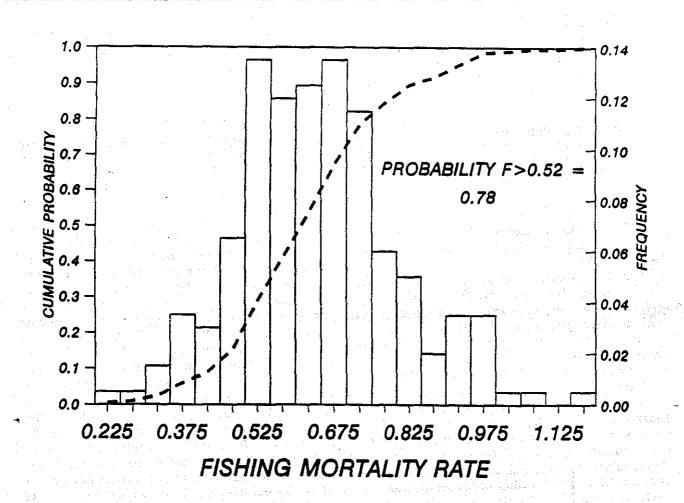



Figure D13. Bootstrap estimates of average fishing mortality rates (1989-1991) for female lobsters in the Gulf of Maine assessment area. The probability that F exceeds the reference overfishing level is 0.78. Table D15.

Indices of prerecruit and fully-recruited stock size (numbers per tow from NMFS autumn bottom trawl surveys) and total landings (millions of female lobsters) in the Georges Bank and South offshore assessment area by survey years (Q4 year i + Q1, Q2, Q3 of year i+1)

| Survey | Indices  | s of Abundance  | Total    |
|--------|----------|-----------------|----------|
| Year   | Recruits | Fully-Recruited | Landings |
| 1979   | 0.0940   | 0.3302          | 0.949159 |
| 1980   | 0.0816   | 0.3169          | 1.090160 |
| 1981   | 0.1243   | 0.3403          | 1.415728 |
| 1982   | 0.1311   | 0.3588          | 2.025416 |
| 1983   | 0.1268   | 0.2849          | 3.451745 |
| 1984   | 0.1194   | 0.3218          | 4.918873 |
| 1985   | 0.1728   | 0.2485          | 6.859152 |
| 1986   | 0.1735   | 0.3122          | 5,949321 |
| 1987   | 0.0989   | 0.2121          | 6.231778 |
| 1988   | 0.1007   | 0.3223          | 5.135940 |
| 1989   | 0.1693   | 0.3303          | 5.095941 |
| 1990   | 0.2133   | 0.3467          | 2.803984 |
| 1991   | 0.0996   | 0.4064          | 1.771617 |
| 1992   | 0.1883   | 0.3392          |          |

sample sizes that would be necessary to detect significant changes (a = 0.01) in length frequency distributions between years were evaluated. This analysis utilized the two-sample Kolmogorov-Smirnov test and assumed that the magnitude of the maximum difference ( $D_{max}$ ) in cumulative distributions between years would be observed in the sample data. The annual sample size necessary to detect a change is  $(2.3/D_{max})^2$ . Examination of one- and two-year differences revealed that at least 2000 length measurements would be required in most years. The issue of the appropriate sampling stratification (*e.g.* division, quarter, *etc.*) was not resolved.

To minimize the effects of variable annual recruitment, three-year running average relative length frequencies were applied to estimated annual number of females landed, as recommended by Somerton and Kobayashi (1990). For example, the length frequency used for the 1991 analysis was derived by applying the 1990 to 1992 mean relative size class frequency to the 1991 estimate of total female landings.

Table D16.Estimates of stock size (numbers) fishing and total mortality rates and biomasses of Georges Bank<br/>and South offshore lobster (female), based on DeLury model run assuming selectivity of<br/>prerecruits and fully-recruited animals to NMFS survey gear is equal

#### Recruits =Size Class 1 Fully-Recruited =Size Class 2+

1981

1982

1490

1579

Na Ni

|     | Survey<br>Year |           |                 | F<br>on Size     | F<br>on Size | F<br>on Sizes |  |
|-----|----------------|-----------|-----------------|------------------|--------------|---------------|--|
|     |                | Recruits  | Fully-Recruited | 1+               | 1            | 2+            |  |
|     | 1979           | 4.213     | 13.275          | 0.08             | 0.03         | 0.09          |  |
|     | 1980           | 3.644     | 14.639          | 0.09             | 0.03         | 0.10          |  |
|     | 1981           | 5.248     | 15.119          | 0.12             | 0.04         | 0.14          |  |
|     | 1982           | 5.374     | 16.410          | 0.15             | 0.06         | 0.19          |  |
|     | 1983           | 5.452     | 16.888          | 0.20             | 0.07         | 0.25          |  |
|     | 1984           | 5.228     | 16.500          | 0.28             | 0.10         | 0.34          |  |
|     | 1985           | 8.134     | 14.814          | 0.36             | 0.14         | 0.47          |  |
|     | 1986           | 8.113     | 14.552          | 0.31             | 0.12         | 0.41          |  |
|     | 1987           | 5.371     | 15.098          | 0.32             | 0.12         | 0:39          |  |
|     | 1988           | 5.237     | 13.428          | 0.29             | 0.11         | 0.37          |  |
|     | 1989           | 8.189     | 12.589          | 0.28             | 0.11         | 0.38          |  |
|     | 1990           | 9.490     | 14.267          | 0.14             | 0.06         | 0.19          |  |
|     | 1991           | 4.525     | 18.693          | 0.10             | 0.03         | 0.11          |  |
|     | 1992           | 8.879     | 19.033          |                  |              |               |  |
|     | Survey         |           | Biomass Estima  | tes (mt, Oct. 1) | н.           | Catch Biomass |  |
|     | Year           | Recruits  | Fully           | Total            | Exploited    | During Survey |  |
|     |                |           | Recruited       | Biomass          | Biomass      | Year (mt)     |  |
| . • | 1979           | 1264      | 14632           | 15896            | 15006        | 690           |  |
|     | 1980           | 1054      | 19421           | 20475            | 19733        | 1203          |  |
|     |                | ··· - · · |                 |                  |              |               |  |

17781

19571

16734

18460

1733

1493

D. Pezzack, Department of Fisheries and Oceans-Canada, P.O. Box 55, Halifax, NS B3J 2S7.

16292

17992

| ÷.,   | Survey |          | <b>Biomass Estimat</b> | Biomass Estimates (mt, Oct. 1) |                      |                            |
|-------|--------|----------|------------------------|--------------------------------|----------------------|----------------------------|
| • .   | Year   | Recruits | Fully-<br>Recruited    | Total<br>Biomass               | Exploited<br>Biomass | During Survey<br>Year (mt) |
| , de  | 1983   | 1609     | 19892                  | 21501                          | 20369                | 1997                       |
|       | 1984   | 1621     | 13619                  | 15240                          | 14100                | 2575                       |
|       | 1985   | 2482     | 17124                  | 19605                          | 17860                | 2611                       |
| · · · | 1986   | 2405     | 12436                  | 14841                          | 13149                | 2865                       |
|       | 1987   | 1627     | 15597                  | 17224                          | 16079                | 3036                       |
|       | 1988   | 1682     | 13757                  | 15438                          | 14255                | 1900                       |
|       | 1989   | 2562     | 14177                  | 16739                          | 14937                | 1707                       |
|       | 1990   | 2941     | 13493                  | 16434                          | 14366                | 2399                       |
|       | 1991   | 1402     | 21257                  | 22659                          | 21673                | 1557                       |
|       | 1992   | . 2904   | 22366                  | 25270                          | 23228                |                            |

Table D16. Continued.

Table D17.

1.165

. Estimates of stock size (numbers) fishing and total mortality rates and biomasses of Georges Bank and South offshore lobster (female), based on DeLury model run assuming selectivity of prerecruits 0.5 that of fully-recruited lobsters to NMFS survey gear

#### Recruits =Size Class 1 Fully-Recruited =Size Class 2+

| Survey<br>Year | Stock Size Estimates<br>(millions-Oct 1) |                 | F<br>on Size | F<br>on Size | F<br>on Sizes |  |
|----------------|------------------------------------------|-----------------|--------------|--------------|---------------|--|
|                | Recruits                                 | Fully-Recruited | 1+           | 1            | 2+            |  |
| 1979           | 3.111                                    | 4.957           | 0.17         | 0.07         | 0.23          |  |
| 1980           | 2.700                                    | 6.178           | 0.18         | 0.07         | 0.23          |  |
| 1981           | 3.732                                    | 6.685           | 0.22         | 0.09         | 0.29          |  |
| 1982           | 3.866                                    | 7.595           | 0.27         | 0.11         | 0.35          |  |
| 1983           | 4.164                                    | 7.916           | 0.38         | 0.15         | 0.50          |  |
| 1984           | 4.216                                    | 7.504           | 0.56         | 0.22         | 0.75          |  |
| 1985           | 7.238                                    | 6.045           | 0.72         | 0.35         | 1.17          |  |
| 1986           | 6.957                                    | 5.853           | 0.62         | 0.30         | 1.01          |  |
| 1987           | 5.772                                    | 6.226           | 0.69         | 0.31         | 1.04          |  |
| 1988           | 4.988                                    | 5.456           | 0.65         | 0.29         | 0.98          |  |
| 1989           | 6.497                                    | 4.940           | 0.59         | 0.29         | 0.99          |  |
| 1990           | 6.716                                    | 5.727           | 0.29         | 0.14         | 0.47          |  |
| 1991           | 3.507                                    | 8.429           | 0.19         | 0.07         | 0.24          |  |
| 1992           | 7,350                                    | 8 900           |              |              |               |  |

| Survey      |             | Biomass Estimates (mt, Oct. 1) |                  |                      |                            |  |
|-------------|-------------|--------------------------------|------------------|----------------------|----------------------------|--|
| Year        | Recruits    | Fully-<br>Recruited            | Total<br>Biomass | Exploited<br>Biomass | During Survey<br>Year (mt) |  |
| 1979        | 933         | 5464                           | 6397             | 5741                 | 690                        |  |
| 1980        | 781         | 8196                           | 8978             | 8428                 | 1203                       |  |
| 1981        | 1059        | 7204                           | 8263             | 7518                 | 1733                       |  |
| 1982        | 1136        | 8327                           | 9463             | 8664                 | 1493                       |  |
| 1983        | 1228        | 9324                           | 10553            | 9689                 | 1997                       |  |
| 1984        | 1307        | 6194                           | 7502             | 6582                 | 2575                       |  |
| 1985        | 2208        | 6988                           | 9196             | 7643                 | 2611                       |  |
| 1986        | 2062        | 5002                           | 7064             | 5614                 | 2865                       |  |
| 1987        | 1749        | 6432                           | 8181             | 6951                 | 3036                       |  |
| 1988        | 1602        | 5590                           | 7191             | 6065                 | 1900                       |  |
| 1989        | 2032        | 5563                           | 7595             | 6166                 | 1707                       |  |
| 1990        | 2081        | 5417                           | 7498             | 6034                 | 2399                       |  |
| 1991        | 1086        | 9586                           | 10672            | 9908                 | 1557                       |  |
| <b>1992</b> | <b>2404</b> | 10458                          | 12862            | 11172                |                            |  |

Indices of prerecruit and fully recruited stock size (numbers per tow from Rhode Island bottom trawl surveys) and total landings (millions of female lobsters) in the South of Cape Cod-Long Island Sound inshore assessment area, presented for survey years (Q4 year i + Q1, Q2, Q3 of year i+1).

| Survey<br>Year | Indices<br>Recruits | Total<br>Landing |          |
|----------------|---------------------|------------------|----------|
| <u> </u>       |                     | Fully-Recruited  |          |
| 1979           | 0.0960              | 0.0240           | 1.785189 |
| 1980           | 0.6380              | 0.0710           | 1.387242 |
| 1981           | 0.6400              | 0.0910           | 1.715388 |
| 1982           | 0.2060              | 0.0120           | 3.206920 |
| 1983           | 0.2900              | 0.0940           | 3.436386 |
| 1984           | 0.4910              | 0.2120           | 3.494189 |
| 1985           | 0.6310              | 0.0150           | 3.477153 |
| 1986           | 0.4000              | 0.0370           | 3.397401 |
| 1987           | 1.5270              | 0.3300           | 3.538575 |
| 1988           | 0.9510              | 0.2190           | 4.099118 |
| 1989           | 1.3830              | 0.2850           | 4.479324 |
| 1990           | 1.1020              | 0.1550           | 4.746186 |
| 1991           | 0.7680              | 0.1930           | 4.470257 |
| 1992           | 1.3280              | 0.2510           | •        |

The Pope (1972) cohort analysis model assumes that catch is removed from the population at mid-year:

$$N_{t+1} = (N_t e^{-0.5M} - C_t) e^{-0.5M}$$

where:

Table D18.

N: cohort size,

t: time (y),

M: natural mortality, and

C: landings.

The annual recruitment schedule for Gulf of Maine lobster provides evidence that majority of lobster landings in the Gulf of Maine are taken in the later months of the year. Accordingly, a modified model,

$$N_{t+1} = (N_{t}e^{-0.7M} - C_{t})e^{-0.3M}$$

was used that assumes removal in mid-August. Sensitivity of estimates to this adjustment are reported next.

A length-based approach to cohort analysis (Jones 1974) used von Bertalanffy growth parameters to estimate the average time to grow from one length to a larger length (Nt):

$$N_{i+\Delta i} = (N_i e^{-0.5M\Delta t} - C_{i,i+\Delta i})e^{-0.5M\Delta t}$$

where

 $N_{l+\Delta l}$  = the number of animals growing from length l to length  $l+_{Al}$ .

Estrella and Cadrin (1991) reported that estimates of instantaneous fishing mortality (F) for Gulf of Maine lobster using the Jones model were very sensitive to growth parameter estimates. A more appropriate estimation of lobster growth based on growth increment and molt probability (as in Fogarty and Idoine 1988) was employed to estimate Nt for 5 mm size classes.

The modified length-based cohort analyses used 0.8 as a terminal estimate of total instantaneous mortality (Z, from SAW-14 DeLury analysis), and 0.1 instantaneous natural (M, from Thomas 1973). Length frequencies, estimated number in sea, F at size, and weighted average F for 1981 and 1992 are listed in Table D20. Annual estimates of weighted Fs are plotted in Figure D15.

Sensitivity of estimates to input parameters was assessed using the 1991 running average run (Table D21). The possible bias of underestimating offshore landings was assessed by removing area 515 landings from the 1991 analysis. The result was fewer large lobster and an increase in estimated weighted average F of 0.04.

Increasing terminal F to 2.5 or decreasing it to 0.2 had no appreciable effect on weighted average F. Increasing M to 0.15 caused a proportional decrease in weighted average F. Using catch at mid-year, increased weighted average F by 0.25.

The implementation of LCA for American lobster populations was improved significantly with the inclusion of length increments from the molt increment data, rather than assuming van Bertalanffy growth. The method produces estimates of fishing mortality substantially greater than the 1+ group Fs from DeLury methods. However, when compared to 2+ group DeLury estimates, the two sets of Fs are more comparable. In particular, if the assumption of differential selectivity of prerecruits and fully-recruited sizes (ratio of 0.5) holds, then the estimated of F produced by LCA and DeLury are nearly identical (LCA average for 1990 to 1992 = 1.36; DeLury (S\_R=0.5) average F for 1989 to 1991 (survey years, size group 2+) = 1.34. Nevertheless, given the relatively poor catch sampling of offshore catches in the Gulf of Maine and the lack of definitive analysis of trawl selection of various size classes of lobsters, these comparisons are considered provisional. Because of the relative stationarity of length compositions over time, an intensive experiment to collect better offshore

# Table D19. Estimates of stock size (numbers), fishing and total mortality rates, and biomasses of South of Cape Cod-Long Island Sound inshore lobster (females), based on DeLury model run assuming prerecruits and fully-recruited lobsters have equal selectivity to survey gear

| Survey<br>Year                                                               |                                                                           | ze Estimates<br>ons-Oct 1)<br>Fully-Recruited                     | F<br>on Size<br>1+                                                         | F<br>on Size<br>1                                                     | F<br>on Sizes<br>2+                                                        |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------|
| 1979                                                                         | 1.908                                                                     | 0.160                                                             | 1.80                                                                       | 1.52                                                                  | 5.13                                                                       |
| 1980                                                                         | 1.829                                                                     | 0.309                                                             | 1.36                                                                       | 1.01                                                                  | 3.42                                                                       |
| 1981                                                                         | 1.321                                                                     | 0.496                                                             | 3.02                                                                       | 1.83                                                                  | 6.18                                                                       |
| 1982                                                                         | 3.634                                                                     | 0.080                                                             | 1,83                                                                       | 1.74                                                                  | 5.88                                                                       |
| 1983                                                                         | 3.816                                                                     | 0.537                                                             | 1.37                                                                       | 1.06                                                                  | 3.57                                                                       |
| 1984 `                                                                       | 2.606                                                                     | 1.003                                                             | 3.59                                                                       | 2.17                                                                  | 7.30                                                                       |
| 1985                                                                         | 3.643                                                                     | 0.090                                                             | 2.69                                                                       | 2.54                                                                  | 8.57                                                                       |
| 1986                                                                         | 4.441                                                                     | 0.230                                                             | 1.12                                                                       | 1.00                                                                  | 3.38                                                                       |
| 1987                                                                         | 4.860                                                                     | 1.380                                                             | 1.20                                                                       | 0.79                                                                  | 2.66                                                                       |
| 1988                                                                         | 4.356                                                                     | 1.697                                                             | 1.26                                                                       | 0.76                                                                  | 2.55                                                                       |
| 1989                                                                         | 4.467                                                                     | 1.558                                                             | 1.59                                                                       | 0.99                                                                  | 3.33                                                                       |
| 1990                                                                         | 5.149                                                                     | 1.109                                                             | 1.50                                                                       | 1.06                                                                  | 3.56                                                                       |
| 1991                                                                         | 4.814                                                                     | 1.266                                                             | 1.31                                                                       | 0.88                                                                  | 2.97                                                                       |
| 1992                                                                         | 7.951                                                                     | 1.478                                                             |                                                                            |                                                                       |                                                                            |
| Survey                                                                       |                                                                           | Biomass Estimat                                                   | es (mt. Oct. 1)                                                            |                                                                       | Catch Biomass                                                              |
| Year                                                                         | Recruits                                                                  | Fully-                                                            | Total                                                                      | Exploited                                                             | During Survey                                                              |
|                                                                              | -                                                                         | Recruited                                                         | Biomass                                                                    | Biomass                                                               | Year (mt)                                                                  |
|                                                                              |                                                                           |                                                                   | 684                                                                        | 256                                                                   | 981                                                                        |
| 1979                                                                         | 608                                                                       | 76                                                                | 001                                                                        | 200                                                                   | 301                                                                        |
| 1979<br>1980                                                                 | 608<br>626                                                                | 189                                                               |                                                                            |                                                                       |                                                                            |
|                                                                              |                                                                           |                                                                   | 816                                                                        | 375                                                                   | 758                                                                        |
| 1980                                                                         | 626                                                                       | 189                                                               | 816<br>696                                                                 | 375<br>376                                                            | 758<br>945                                                                 |
| 1980<br>1981                                                                 | 626<br>454                                                                | 189<br>242                                                        | 816                                                                        | 375                                                                   | 758                                                                        |
| 1980<br>1981<br>1982                                                         | 626<br>454<br>1222                                                        | 189<br>242<br>41<br>275                                           | 816<br>696<br>1264<br>1650                                                 | 375<br>376<br>404<br>683                                              | 758<br>945<br>1775<br>1890                                                 |
| 1980<br>1981<br>1982<br>1983                                                 | 626<br>454<br>1222<br>1376<br>913<br>1261                                 | 189<br>242<br>41                                                  | 816<br>696<br>1264                                                         | 375<br>376<br>404                                                     | 758<br>945<br>1775                                                         |
| 1980<br>1981<br>1982<br>1983<br>1984                                         | 626<br>454<br>1222<br>1376<br>913                                         | 189<br>242<br>41<br>275<br>581                                    | 816<br>696<br>1264<br>1650<br>1494                                         | 375<br>376<br>404<br>683<br>852                                       | 758<br>945<br>1775<br>1890<br>1913                                         |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985                                 | 626<br>454<br>1222<br>1376<br>913<br>1261                                 | 189<br>242<br>41<br>275<br>581<br>51                              | 816<br>696<br>1264<br>1650<br>1494<br>1312<br>1626                         | 375<br>376<br>404<br>683<br>852<br>425<br>556                         | 758<br>945<br>1775<br>1890<br>1913<br>1895<br>1857                         |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986                         | 626<br>454<br>1222<br>1376<br>913<br>1261<br>1521                         | 189<br>242<br>41<br>275<br>581<br>51<br>105                       | 816<br>696<br>1264<br>1650<br>1494<br>1312                                 | 375<br>376<br>404<br>683<br>852<br>425                                | 758<br>945<br>1775<br>1890<br>1913<br>1895                                 |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1986                 | 626<br>454<br>1222<br>1376<br>913<br>1261<br>1521<br>1647                 | 189<br>242<br>41<br>275<br>581<br>51<br>105<br>734                | 816<br>696<br>1264<br>1650<br>1494<br>1312<br>1626<br>2381<br>2611         | 375<br>376<br>404<br>683<br>852<br>425<br>556<br>1223                 | 758<br>945<br>1775<br>1890<br>1913<br>1895<br>1857<br>1969<br>2316         |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988         | 626<br>454<br>1222<br>1376<br>913<br>1261<br>1521<br>1647<br>1580         | 189<br>242<br>41<br>275<br>581<br>51<br>105<br>734<br>1031        | 816<br>696<br>1264<br>1650<br>1494<br>1312<br>1626<br>2381<br>2611<br>2332 | 375<br>376<br>404<br>683<br>852<br>425<br>556<br>1223<br>1500<br>1222 | 758<br>945<br>1775<br>1890<br>1913<br>1895<br>1857<br>1969<br>2316<br>2530 |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989 | 626<br>454<br>1222<br>1376<br>913<br>1261<br>1521<br>1647<br>1580<br>1579 | 189<br>242<br>41<br>275<br>581<br>51<br>105<br>734<br>1031<br>754 | 816<br>696<br>1264<br>1650<br>1494<br>1312<br>1626<br>2381<br>2611         | 375<br>376<br>404<br>683<br>852<br>425<br>556<br>1223<br>1500         | 758<br>945<br>1775<br>1890<br>1913<br>1895<br>1857<br>1969<br>2316         |

Recruits -Size Class 1 Fully-Recruited -Size Class 2+

length composition data could yield valuable insights into inshore/offshore distributions.

# **BIOLOGICAL REFERENCE POINTS**

Biological reference points used in the assessment and management of lobster populations are based on yield and egg production per recruit analyses. The overfishing definition for American lobster adopted by the New England Fishery Management Council specifies that the resource will be considered overfished when the egg production per recruit is reduced to 10% of the unexploited state throughout the range (NEFMC 1991). The method used in the current assessment is based on the size-structured model described by Fogarty and Idoine (1988). Basic components of the model include size-specific annual molt probabilities, molt increments, egg bearing proportions, fecundities and weights. Growth is determined by the combination of the annual molt probability and increment. The analysis was carried out individually for each of the three assessment areas. For the purposes of the present analysis, several modifications were made to the original formulation to account for regulations specific to lobster fisheries in the Gulf of



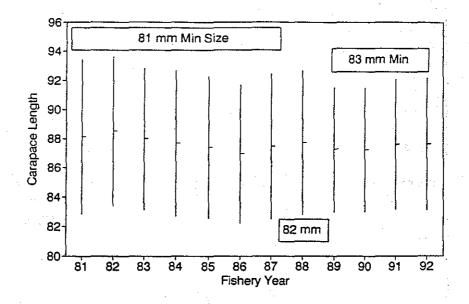



Figure D14. Mean ± one standard deviation of size frequencies from female American lobsters landed from the Gulf of Maine assessment area, 1981-1992.

| Table D20. | Results of length-based co | hort analyses : | for female l | obsters from | i the Gulf | of Maine as | ssessment |
|------------|----------------------------|-----------------|--------------|--------------|------------|-------------|-----------|
|            | area for 1981 and 1992     | ÷ .             |              | •            |            |             |           |
|            |                            |                 |              |              |            |             |           |

| 1981                                             |                                                  |                                                  |                                                  |                                  |                                  |                                          |                                           |                                  | _                                                  |
|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------|----------------------------------|------------------------------------------|-------------------------------------------|----------------------------------|----------------------------------------------------|
| Length<br>Group                                  | Number<br>Landed                                 | Number<br>In Sea                                 | Mean<br>Number                                   | F/2                              | ZDT                              | FDT                                      | Z                                         | DT                               | F                                                  |
| 141-145                                          | 0.100E+01                                        | 0.126E+01                                        |                                                  | · ·                              |                                  | an a | ··· ·                                     |                                  |                                                    |
| 136-140                                          | 0.100E+01                                        | 0.276E+01                                        | 0.192E+01                                        | 0.669                            | 0.781                            | 0.522                                    | 0.302                                     | 2.275                            | 0.20                                               |
| 131-135                                          | 0.500E+01                                        | 0.919E+01                                        | 0.535E+01                                        | 0.777                            | 1.204                            | 0.935                                    | 0.448                                     | 2.098                            | 0.34                                               |
| 126-130                                          | 0.700E+01                                        | 0.191E+02                                        | 0.136E+02                                        | 0.703                            | 0.734                            | 0.516                                    | 0.337                                     | 1.921                            | 0.23                                               |
| 121-125                                          | 0.639E+04                                        | 0.725E+04                                        | 0.122E+04                                        | 0.885                            | 5.936                            | 5.251                                    | 0.867                                     | 1.743                            | 0.76                                               |
| 116-120                                          | 0.266E+05                                        | 0.381E+05                                        | 0.186E+05                                        | 0.861                            | 1.661                            | 1.429                                    | 0.717                                     | 1.566                            | 0.61                                               |
| 111-115                                          | 0.315E+05                                        | 0.786E+05                                        | 0.560E+05                                        | 0.780                            | 0.723                            | 0.564                                    | 0.455                                     | 1.388                            | 0.35                                               |
| 106-110                                          | 0.110E+06                                        | 0.208E+06                                        | 0.133E+06                                        | 0.847                            | 0.975                            | 0.826                                    | 0.654                                     | 1.211                            | 0.55                                               |
| 101-105                                          | 0.162E+06                                        | 0.405E+06                                        | 0.296E+06                                        | 0.823                            | 0.665                            | 0.548                                    | 0.566                                     | 1.033                            | 0.46                                               |
| 96-100                                           | 0.451E+06                                        | 0.920E+06                                        | 0.628E+06                                        | 0.876                            | 0.820                            | 0.718                                    | 0.803                                     | 0.856                            | 0.70                                               |
| 91-95                                            | 0.257E+07                                        | 0.368E+07                                        | 0.199E+07                                        | 0.931                            | 1.387                            | 1.292                                    | 1.455                                     | 0.679                            | 1.35                                               |
| 86-90                                            | 0.472E+07                                        | 0.876E+07                                        | 0.586E+07                                        | 0.930                            | 0.866                            | 0.805                                    | 1.419                                     | 0.501                            | 1.31                                               |
| 81-85                                            | 0.438E+07                                        | 0.135E+08                                        | 0.110E+08                                        | 0.919                            | 0.435                            | 0.400                                    | 1.227                                     | 0.324                            | 1.12                                               |
| TOTAL                                            | 0.125E+08                                        | · · · · ·                                        | 0.200E+08                                        |                                  |                                  |                                          |                                           | /td. Ave.                        | F 1.21                                             |
| 1992                                             |                                                  |                                                  |                                                  |                                  | · .                              |                                          |                                           | a gad                            | : :                                                |
| Length                                           | Number                                           | Number                                           | Меал                                             | F/Z                              | ZDT                              | FDT                                      | 2                                         | DT                               | F                                                  |
| Group                                            | Landed                                           | In Sea                                           | Number                                           |                                  |                                  |                                          |                                           | · ·                              |                                                    |
| 138-143                                          | 0.484E+03                                        | 0.618E+03                                        | : .                                              |                                  |                                  |                                          |                                           |                                  |                                                    |
| 133-138                                          | 0.874E+04                                        | 0.179E+04                                        | 0.110E+04                                        | 0.747                            | 1.062                            | 0.794                                    | 0.396                                     | 2.187                            | 0.296                                              |
| 128-133                                          | 0.112E+04                                        | 0.348E+04                                        | 0.254E+04                                        | 0.665                            | 0.666                            | 0.443                                    | 0.298                                     | 2.009                            | 0.198                                              |
| 123-128                                          | 0.108E+05                                        | 0.164E+05                                        | 0.834E+04                                        | 0.832                            | 1.552                            | 1.291                                    | 0.596                                     | 1.832                            | 0.496                                              |
| 118-123                                          | 0.356E+05                                        | 0.593E+05                                        | 0.334E+05                                        | 0.829                            | 1.283                            | 1.064                                    | 0.586                                     | 1.654                            | 0.486                                              |
| 110-120                                          |                                                  | 0.0045.05                                        |                                                  |                                  |                                  | 0.054                                    | 0.262                                     | 1.477                            | 0.162                                              |
|                                                  | 0.186E+05                                        | 0.894E+05                                        | 0.733E+05                                        | 0.619                            | 0.411                            | 0.254                                    | 0.202                                     |                                  | -                                                  |
| 113-118<br>108-113                               | 0.186E+05<br>0.707E+05                           | 0.894E+05<br>0.179E+06                           | 0.733E+05<br>0.129E+06                           | 0.619                            | 0.411<br>0.696                   | 0.254                                    |                                           | 1.300                            | 0.369                                              |
| 113-118<br>108-113                               |                                                  |                                                  |                                                  |                                  |                                  |                                          | 0.469                                     |                                  |                                                    |
| 113-118<br>108-113<br>103-108                    | 0.707E+05                                        | 0.179E+06                                        | 0.129E+06                                        | 0.787                            | 0.696                            | 0.547                                    | 0.469<br>0.433                            | 1.300                            | 0.333                                              |
| 113-118                                          | 0.707E+05<br>0.972E+05                           | 0.179E+06<br>0.306E+06                           | 0.129E+06<br>0.237E+06                           | 0.787<br>0.769                   | 0.696<br>0.534                   | 0.547<br>0.410                           | 0.469<br>0.433<br>0.519                   | 1.300<br>1.122                   | 0.333                                              |
| 113-118<br>108-113<br>103-108<br>98-103<br>93-98 | 0.707E+05<br>0.972E+05<br>0.178E+06              | 0.179E+06<br>0.306E+06<br>0.526E+06              | 0.129E+06<br>0.237E+06<br>0.406E+06              | 0.787<br>0.769<br>0.807          | 0.696<br>0.534<br>0.543          | 0.547<br>0.410<br>0.439                  | 0.469<br>0.433<br>0.519<br>1.369          | 1.300<br>1.122<br>0.945          | 0.333<br>0.419<br>1.269                            |
| 113-118<br>108-113<br>103-108<br>98-103          | 0.707E+05<br>0.972E+05<br>0.178E+06<br>0.177E+07 | 0.179E+06<br>0.306E+06<br>0.526E+06<br>0.244E+07 | 0.129E+06<br>0.237E+06<br>0.406E+06<br>0.125E+07 | 0.787<br>0.769<br>0.807<br>0.927 | 0.696<br>0.534<br>0.543<br>1.533 | 0.547<br>0.410<br>0.439<br>1.421         | 0.469<br>0.433<br>0.519<br>1.369<br>1.620 | 1.300<br>1.122<br>0.945<br>0.767 | 0.369<br>0.333<br>0.419<br>1.269<br>1.520<br>1.226 |

| Sec. Oak            |    |
|---------------------|----|
| 126.0.00            | ۰. |
|                     | 2  |
| Contraction and     |    |
| 20 - C. C. C. C. S. |    |
| 2000 and 100        |    |
|                     |    |




Figure D15. Calculated fishing mortality rates for female American lobster from the Gulf of Maine assessment aream 1981-1992. Results are annual, estimated from length-cohort analyses.

Table D21.Estimated fishing mortality rates for<br/>female lobsters from the Gulf of Maine<br/>assessment area, based on length cohort<br/>analyses, presented for single year and<br/>running averages of three-year intervals<sup>1</sup>

| Year | 1-Year Runs<br>Runs | 3-Year Runs<br>Runs                   |
|------|---------------------|---------------------------------------|
| 1981 | 1.215               | · · · · · · · · · · · · · · · · · · · |
| 1982 | 1.162               | 1.213                                 |
| 1983 | 1.276               | 1.249                                 |
| 1984 | 1.337               | 1.338                                 |
| 1985 | 1.415               | 1.412                                 |
| 1986 | 1.504               | 1.428                                 |
| 1987 | 1.376               | -                                     |
| 1988 | 1.391               | •                                     |
| 1989 | 1.411               | -                                     |
| 1990 | 1.360               | 1.366                                 |
| 1991 | 1.333               | 1.337                                 |
| 1992 | 1.326               | · · ·                                 |

Sensitivity Runs(using 1991 data only):

- (1), Remove landings at size from area 515:F=1.379
- (2) Set M = 0.15: F = 1.286
- (3) Set Terminal F = 2.5: F = 1.337
- (4) Set Terminal F= 0.2: F = 1.336
- (5) Set t = 0.5; F = 1.591

Sensitivity runs are summarized in the table. Three-year average runs do not include 1988, the only year in which a 82 mm minimum size limit was in effect. Maine including the practice of v-notching and the use of maximum legal size limits. V-notching is practiced traditionally in Maine but is not mandatory. Accordingly, we have used the fraction of landings in the Gulf of Maine attributable to Maine alone (71%) to adjust the analyses and have explored a range of levels of v-notching (0, 50 and 100%).

The results of the analyses of Fogarty and Idoine (1988) for female lobsters were expressed in terms of the nominal fishing mortality rate. Since a significant portion of this resource is protected from exploitation at various points in the individual's life history (including berried and v-notched, and minimum and maximum sizes). the vulnerable portion of the population changes, and thus the actual mortality on the population diverges from the nominal rate. For comparison with fishing mortality rates actually imposed on the population(s) (such as those calculated by the DeLury analyses), it will be necessary to express the biological reference points in terms of the realized fishing mortality rates after adjustment for those regulations which remove some females from the fishable population. Nominal fishing mortality gives the catch, whereas the realized fishing mortality gives the landings after the catch is decremented for egg bearing, v-notch, and lobsters the maximum size. We assumed that those female lobsters that are berried are in

|                                   |        | Assessment Area      |                        |                                           |  |
|-----------------------------------|--------|----------------------|------------------------|-------------------------------------------|--|
| Parameter                         |        | Gulf of Maine        | Georges Bank and South | South of Cape Cod<br>to Long Island Sound |  |
| Molt Probability <sup>1</sup>     | α<br>β | -8.08127<br>0.076535 | -6.867<br>0.058        | -13.39<br>0.1459                          |  |
| Molt Increment (n                 | nm)    | 11                   | 14                     | 11                                        |  |
| Fecundity <sup>2</sup>            | α<br>β | 0.0010178<br>3.58022 | 0.00658<br>3.1569      | 0.0005046<br>3.7580                       |  |
| Proportion <sup>3</sup><br>Mature | β      | 18.3270<br>-0.1957   | 18.256<br>-0.18299     | 9.720<br>-0.1032                          |  |
| Proportion<br>V-Notched           |        | 1.0; 0.5; 0.0        | 0.0                    | 0.0                                       |  |
| Min/Max<br>Size (mm)              |        | 83/127               | 83/NA                  | 83/NA                                     |  |
| Proportion<br>Max Size            |        | 0.71                 | 0.0                    | 0.0                                       |  |
| Length/Weight <sup>4</sup>        | α<br>β | 0.001167<br>2.9194   | 0.000833998<br>2.972   | 0.001365<br>2.88726                       |  |
| М                                 |        | 0.1                  | 0.1                    | 0.1                                       |  |

 Table D22.
 Parameters used for calculating biological reference points for three assessment areas for female

 American lobster
 American lobster

this condition for a nine month period; that vnotching is performed only on those that are berried and that the v-notch mark was no longer discernible after two molts. The realized rates will necessarily be lower than the nominal fishing mortality rates in these simulations. Realized rates were calculated on an annual basis by iteratively solving the catch equation for F based on the deaths due to fishing (catch) and the population size at the beginning of the period. These annual Fs were weighted (by population size) over the lifetime of the cohort, and the weighted average was considered to be the realized fishing mortality rate.

Parameter inputs were required for the probability of annual molting, molt increment, fecundity, the proportion mature, length-weight relationships and natural mortality rates. The parameters used in the analyses for each of the three assessment regions are provided in Table D22. Parameter inputs for the Georges Bank and south offshore region are derived from Fogarty and Idoine (1988). Estimates of molt probability for the Gulf of Maine region were based on tagging studies in the Gulf of Maine and Scotian Shelf (D. Pezzack, personal communication). Molt probability information for the SCCLIS-I region were based on unpublished tagging studies conducted by the Rhode Island Department of Environmental Management. Information on length-weight relationships and fecundity for the Gulf of Maine and for SCCLIS-I was based on studies conducted by the Massachusetts Division of Marine Fisheries. In addition to results reported here, the Subcommittee also evaluated the sensitivity of these results to alternative assumptions of natural mortality rates.

Biological reference points, including the fishing mortality rate resulting in maximum yield recruit ( $F_{max}$ ) and the level of fishing mortality resulting in reduction to 10% of the maximum egg production per recruit ( $F_{10\%}$ ) were calculated for each of the three assessment areas. The relationships between yield and egg production per recruit and fishing mortality rate are provided in Figures D16 to D18 and Table D23. Calculated

 $F_{max}$  and  $F_{10\%}$  EPR values for female lobsters from the Gulf of Maine assessment areas, under various assumptions of fractions of egg-bearing lobsters caught that are v-notched by Maine fishermen are given below (F values are realized rates for the stock, nominal F values resulting in the realized rates are given in parentheses):

| Percent<br>V-Notched | F <sub>max</sub> | F <sub>10%</sub> EPR |
|----------------------|------------------|----------------------|
| 100                  | 0.26 (0.43)      | 0.55 (0.78)          |
| 50                   | 0.29 (0.41)      | 0.52 (0.67)          |
| 0                    | 0.31 (0.39)      | 0.50 (0.59)          |

For the Gulf of Maine, the key run of yield and eggproduction per recruit assumed a 50% v-notching rate. The 50% v-notching rate is a measure of the proportion of egged females that are actually v-notched by Maine fishermen. Since vnotching is not mandatory, this was assumed to be a reasonable level for the region. As stated

| Table D23. | Summary of estimated biological reference points ( $F_{1046}$ EPR, $F_{max}$ ) and current estimates of fishing mortality |
|------------|---------------------------------------------------------------------------------------------------------------------------|
|            | for three assessment areas for American<br>lobster                                                                        |

| Area                                            | F <sub>10%</sub> EPR | F    | Average F<br>(1989-1991) |
|-------------------------------------------------|----------------------|------|--------------------------|
| Gulf of Maine                                   | 0.52                 | 0.29 | 0.65                     |
| Georges Bank<br>and South                       | 0.44                 | 0.15 | 0.24-0.511               |
| South<br>of Cape Cod<br>to Long Island<br>Sound | 0.68                 | 0.38 | 1.47                     |

<sup>1</sup> Averages for 1988-1990, assuming two levels of selection of prerecruits to survey gear.

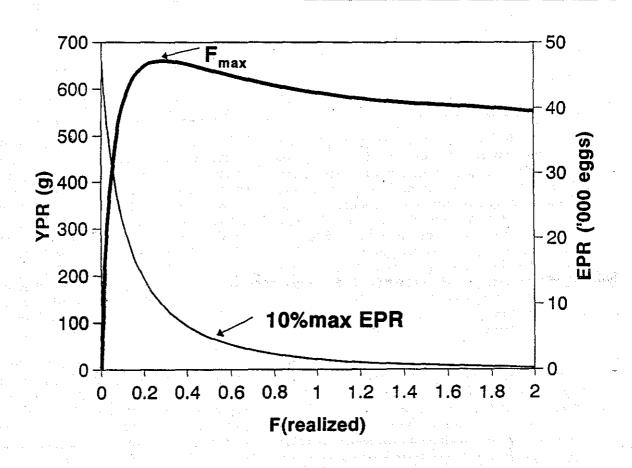



Figure D16. Calculated yield and egg production per recruit for female American lobsters from the Gulf of Maine assessment area assuming a 50% v-notching rate by Maine fishermen.



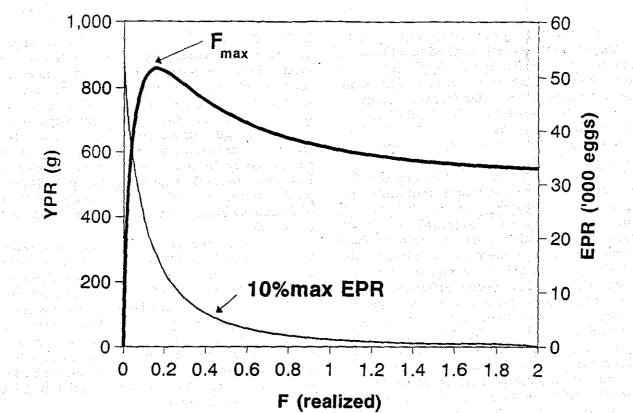



Figure D17. Calculated yield and egg production per recruit for female American lobsters from the Georges Bank and South-Offshore assessment area.

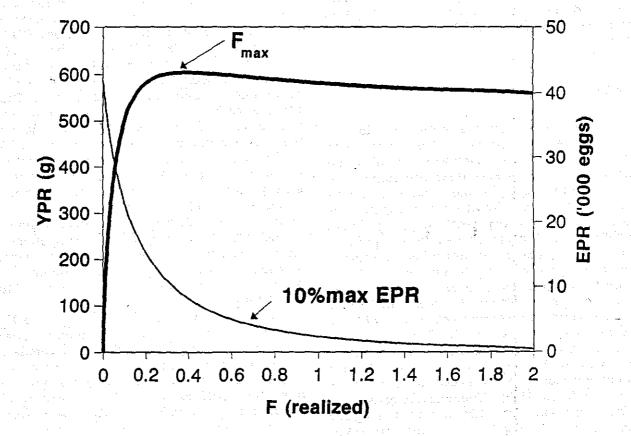



Figure D18. Calculated yield and egg production per recruit for female American lobsters from the South of Cape Cod to Long Island Sound-Inshore assessment area.

above, the v-notching and maximum size (127 mm CL) protections were applied to 71% of the animals, since these programs apply only to the state of Maine (which averages 71% of the landings in the Gulf of Maine for this time period).

For the GBS-O region, the  $F_{10\%}$ EPR level is 0.44 and for the inshore southern New England region is 0.68. The  $F_{max}$  levels are: Georges Bank = 0.15, SCCLIS-I = 0.38.

Differences in the resultant biological reference points from the last assessment (SARC 14) are due to the following reasons. The Gulf of Maine  $F_{10\%}$  dropped from 1.0 (SARC 14) to 0.52, This is due to several reasons. The current model utilizes growth parameters better suited for the Gulf of Maine, and allows for only 50% v-notching. Additionally, the biological reference point in this study is explicitly calculated as a realized F, not nominal. The differences in the Georges Bank values are small. The SARC 14 value of 0.44 was a nominal value based on a combination of molting and hardshell natural mortalities. Additionally, the average molt increment was reexamined and found to be 14 mm as opposed to the 15 mm value use last time. The SCC-LIS values are new analyses, and were not attempted last time. Provisional growth parameters, given the lack of specific knowledge of molt probability were used for this area. Therefore, the calculated reference points for the SCCLIS-I area are provisional.

# DISCUSSION

Recent annual landings of American lobster are at record high levels. The increases in landings during this period are a result of an apparent increase in recruitment, combined with increasing fishing effort, particularly in the inshore pot fisheries. Total lobster landings declined by 13% during 1992, with significant reductions occurring in all major lobster-producing states. Reductions in Gulf of Maine landings were accompanied by significant declines in inshore CPUE and research vessel trawl survey indices for prerecruit and fully-recruited sizes. Relative abundance indices elsewhere did not decline as drastically as in the Gulf of Maine.

Fishing mortality rates on the female component Gulf of Maine stock, based on DeLury population modeling, increased nearly 50% between 1983 and 1991. This trend is consistent with increases in total fishing effort in the region. The average calculated fishing mortality rate of the Gulf of Maine stock over the period 1989 to 1991 is 0.65 (80% CI = 0.47 to 0.87). The major source of uncertainty in DeLury estimates is related to the selection of prerecruits and fullyrecruited sizes by the survey gears. Estimates of fishing mortality based on length cohort analysis of the integrated (inshore + offshore) population is 1.3. Length cohort analyses estimates are similar in magnitude to fishing mortality rates calculated by the DeLury method for the portion fully-recruited at the beginning of the year. Based on the overfishing definition of F=0.52, the Gulf of Maine stock is considered to be overfished (Table D23).

Calculated apparent fishing mortality rates for the South of Cape Cod to Long Island inshore assessment area were extremely high throughout the period (Average F = 1.47 during 1989 to 1991). Abundance and landings in this area increased significantly in recent years, with the exception of 1992. These Fs may be overestimated if a net emigration is occurring. Nevertheless, under any reasonable emigration scenario, this component of the resource is substantially overfished (Table D23).

Calculated fishing mortality rates for the GBS-O assessment area were 0.24 to 0.51 for the three year average, 1988 to 1990 (under two assumptions of size selection by the R/V trawl survey). These calculated values are near the overfishing definition for the offshore GBS-O stock of 0.44 (Table D23). Given that there is some movement of inshore southern lobsters to the offshore stock, F is likely underestimated by assuming a separate offshore component. Combined assessments of the two southern areas were attempted, but are greatly dependent on which research vessel survey series are used for calibration. The inshore Rhode Island survey results in very high Fs, while the NMFS offshore survey produces lower Fs. In the absence of definitive stock identification studies, a cautious approach to exploiting the offshore region is Since the inshore component is warranted. clearly overfished, and the offshore component is at or near the overfishing definition, the southern resource in aggregate is considered to exceed the overfishing level.

Biological reference points of  $F_{max}$  and  $F_{10\%}$ EPR (F level producing 10% of the maximum level of egg production per recruit) were recalculated for the three assessment areas, based on updated biological information, and incorporating protections such as egg-bearing, v-notching and maximum size limits for the Gulf of Maine stock. The most likely level of  $F_{10\%}$  EPR for the Gulf of Maine stock is 0.52, and  $F_{max}$  is 0.29. Reference fishing mortality rates for the SCCLIS-I area are:  $F_{10\%}$  EPR = 0.68;  $F_{max}$  = 0.38. Reference levels for the GBS-O areas are:  $F_{10\%}$  EPR = 0.44;  $F_{max}$  = 0.15 (Table D23).

The Gulf of Maine stock currently generates about 71% of annual landings, while the SCCLIS-I assessment area contributes about 14%. Since both of these stock components (contributing 85% of the landings) are determined to have fishing mortality rates in excess of the overfishing level, and the Georges Bank-Southern New England offshore is near the overfishing level, the aggregate resource is determined to exceed the reference overfishing level.

#### SARC COMMENTS

Recent increases in landings to record levels in 1991, followed by substantial declines in 1992 have been observed in southeast Canadian waters (-20%, D. Pezzack, pers. comm. 1993), and in the United States. Factors responsible for similar trends in landings over the whole area are poorly understood, but need further evaluation.

Examination of diagnostics from DeLury model fits for the Gulf of Maine stock indicate some patterning in residuals, perhaps indicating some misspecification of the model. The influences of environmental factors on catchability and other potential causes of this behavior should be examined in more detail. Similarly, there was concern that variations in prerecruit abundance didn't necessarily correlate well with fluctuations in fully-recruited stock abundance in the trawl survey catch.

The lack of definitive stock identification information (particularly for the area from Georges Bank south) confounds the process of providing region-wide management advice. Clearly, nearshore resources are overfished, and offshore southern resources are near the overfishing definition. Although limited tagging data suggest offshore movements, exploitation rates inshore are so high that few tagged animals are alive long enough to be captured offshore. Alternative methods, such as biochemical studies, could - potentially help in resolving the question of southern stock definition.

#### **RESEARCH RECOMMENDATIONS**

• Results of these analyses have emphasized the need to resolve the question of stock

identification, particularly as related to inshore/offshore components south of Georges Bank. Appropriate genetic studies are highly recommended and a compilation and analysis of existing tagging data should be undertaken prior to any new tagging studies.

- The biological characteristics of catches and landings are sampled very unevenly over the range of the species. In particular, sampling in offshore areas is minimal and enhanced sea sampling and/or port sampling of offshore catches is urgently needed.
- Estimates of biological reference points for the Gulf of Maine stock are partly influenced by the assumed level of v-notching undertaken by area fishermen. No adequate estimate of the proportional compliance with this voluntary measure now exists. Results of a credible study will reduce uncertainty in biological reference points and is so recommended. Sensitivity analyses under three widely varying assumptions of the rate of v-notching by Maine fishermen, indicate that calculations of EPR reference points are relatively insensitive to v-notching.
- More precise and accurate DeLury model estimates of stock sizes and fishing mortality rates can be made if the question of the relative selectivity of prerecruit and fullyrecruited sizes to the bottom trawl survey gear is resolved. Appropriate field studies of lobster availability and research vessel gear selectivity are considered a priority.
- This assessment only considered the female segment of the lobster populations. Similar analyses should be extended to male components.
- The inclusion of multiple survey indices in DeLury population models is important for refining estimates of stock size and F, and should be explored.
- Combined analyses of inshore and offshore southern stocks produced intermediate results, and were sensitive to which research vessel survey series (Rhode Island inshore or NEFSC offshore) was used for DeLury modeling. Quantitative methods for combining assessment results and ref-

erence points for multiple stock areas are necessary for providing region-wide assessment advice for the American lobster resource throughout its range.

• Length cohort analyses should be extended to the two southern stock areas, contingent upon adequate length sampling data.

#### REFERENCES

- Andrews, W.D. 1980. Management of the lobster, *Homarus americanus*, resources of the continental shelf, canyons and slopes of the northern portion of area 4 and southern portion of area 3. Lobster Final Report #03-4-043-359.
- Anthony, V.C. and J.F. Caddy, eds. 1980. Proceedings of the Canada-U.S. workshop on status of assessment science for N.W. Atlantic lobster (Homarus americanus) stocks, St. Andrews N.B., Oct. 24-26, 1978. Can. Tech. Rep. Fish. Aquat. Sci. 932.
- Barlow, J. and G.J. Ridgeway. 1971. Polymorphisms of esterase isozymes in the American lobster (Homarus americanus). J. Fish. Res. Board Can. 28:15-21.
- Briggs, P. T. 1982. Movements, mortality rates and growth of the American lobster off the south shore of Long Island. NOAA, NMFS Completion Report. New York Project 3-333-R under Crower Fisheries Research and Development Act (PL88-309).
- Briggs, P. T. 1985. Movement of the American lobster off the south shore of Long Island, New York. N.Y. Fish and Game J. 32 (1):20-25.
- Briggs, P. T. and F. M. Mushacke. 1980. The American lobster and the pot fishery in the inshore waters off the south shore of Long Island, New York. N.Y. Fish and Game J. 27(2):156-178.
- Conser, R.J. and J. Idoine. 1992. A modified DeLury model for estimating mortality rates and stock sizes of American lobster popula-
- tions. In Report of the Fourteenth Northeast Regional Stock Assessment Workshop (14th SAW). Woods Hole, MA: NOAA/NMFS/ NEFSC. NEFSC Ref. Doc. 92-07; SAW Research Document 14/7.
- Cooper, R.A. and J.R. Uzmann. 1971. Migrations and growth of deep sealobsters, *Homarus americanus*. *Science* 171:288-290.

- Estrella, B.T. and S.X. Cadrin. 1991. Massachusetts coastal commercial lobster trap sampling program, May-November 1990. Mass. Div. Mar. Fish. Publ. No. 16943-57-150-9-91.
- Estrella, B.T. and S.X. Cadrin. 1992. Massachusetts coastal commercial lobster trap sampling program, May-November 1991. Mass. Div. Mar. Fish. Publ. No. 17180-26-150-8/92. 23 p.
- Fogarty, M.J. and J.S. Idoine. 1988. Application of a yield and egg production model based on size to an offshore American lobster population. Trans. Am. Fish Soc. 117:350-362.
- Fogarty, M.J., R.A. Cooper, J.R. Uzmann, and T. Burns. 1982. Assessment of the USA offshore American lobster (Homarus americanus) fishery. *ICES* [International Council for Exploration of the Sea] C.M. 1982/ K:14.
- Jones, R. 1974. Assessing the long term effects of changes in fishing effort and mesh size from length composition data. *ICES* [International Council for Exploration of the Sea] *C.M.* 1974/F:33.
- Krouse, J.S., M.E. Brown, K.H. Kelly, G.E. Nutting, D.B. Parkhurst, Jr., F. Pierce, and G. A. Robinson. 1991. Maine Department of Marine Resources lobster stock assessment project. Completion Report 3-IJ-33.
- NEFMC [New England Fishery Management Council]. 1991. Amendment #4 to the American lobster fishery management plan. Saugus, MA: NEFMC.
- NEFSC [Northeast Fisheries Science Center]. 1992. Report of the Fourteenth Northeast Regional Stock Assessment Workshop (14th SAW). Woods Hole, MA: NOAA/NMFS/ NEFSC. NEFSC Ref. Doc. 92-07.
- Pope, J.G. 1972. An investigation of the accuracy of virtual population analysis using cohort analysis. *ICNAF* [International Commission for the Northwest Atlantic Fisheries] *Res. Bull.* 9:65-74.
- Saila, S.B. and J.M. Flowers. 1968. Movements and behavior of berried female lobsters displaced from offshore areas to Narragansett Bay, Rhode Island. J. Cons. Int. Explor. Mer 31:342-351.
- Saila, S.B. and J.M. Flowers. 1969. Geographic morphometric variation in the American lobster. Syst. Zool. 18:342-351.
- Somerton, D.A. and D.R. Kobayashi. 1990, manuscript. Robustness of the Wetherall length-based method to population disequilibria. Thomas, J.C. 1973. An analy-

sis of the commercial lobster (Homarus americanus) fishery along the coast of Maine, August 1966 through December 1970. NOAA Tech. Rep. NMFS-SSRF 667.

Tracey, M.L., K. Nelson, D. Hedgecock, R.A Schlesser and M. Pressick. 1975. Biochemical genetics of lobsters: Genetic variation and structure of the American lobster (Homarus americanus) populations. J. Fish. Res. Board Can. 32:2091-2101.

- Uzmann, J.R. 1970. Use of parasites in identifying lobster stocks. *J. Parasitol.* 56:4(II, Part 2):349 (abstract).
- Uzmann, J.R., R.A. Cooper, and K.J. Pecci. 1977. Migration and dispersion of tagged lobsters, Homarus americanus on the New England continental shelf. NOAA Tech. Rep. NMFS SSRF-705

Van Engel, W.A and R.E. Harris, Jr. 1980. Biology and management of the American lobster. Lobster Final Report, Virginia Lobster Report 03-4-043-353.

## G. TILEFISH

#### TERMS OF REFERENCE

The following term of reference was addressed:

• Review data possibilities for developing overfishing definitions.

## REVIEW OF DATA POSSIBILITIES FOR OVERFISHING DEFINITION

Limited stock assessment data are available for the development of an overfishing definition for tilefish. The most promising approach to date appears to be based on a nonequilibrium surplus production-type model applied to a CPUE time series constructed from information from the longline fishery from 1973 to the present. Results to date must be interpreted cautiously, however.

Data quality appears inadequate to support development of an overfishing definition for tilefish based on direct estimates of minimum SSB and/or stock-recruitment data unless fairly arbitrary criteria are used. A VPA developed by Turner (1986) is based on only six years of catch data. There are also no recent age data or length data collected to update the VPA. This precludes reasonable fitting of stock-recruitment relationships, and estimates of  $\boldsymbol{F}_{med}$  (or similar points) would be based on a small ten-year-old data set. In addition, unless tilefish sampling were increased and aging undertaken, there would be no way to evaluate the current situation relative to an overfishing definition in terms of either SSB or F.

The use of the yield per recruit model to produce estimates of  $F_{max}$  is a possibility. The major uncertainties and drawbacks are the changes in life history parameters detected by Turner (1986) between the 1977 to 1981 period and 1982, which resulted in different values of  $F_{max}$ . The decrease in the population abundance (based on CPUE) since 1982 suggests that life history parameters may have also changed in recent years. The consequence would be a potential error in the biological reference point. The problem of measuring the current F relative to the biological reference point still exists. Increased monitoring and sampling would be required to collect the appropriate information.

The Southern Demersal Subcommittee and the SARC reviewed the applicability of a nonequilibrium surplus production model to tilefish. The model, as implemented in the computer software package ASPIC by Prager (1991), represents a modification of the Schaefer (1954, 1957) model whereby the requirement for equilibrium conditions is relaxed and ancillary information can be incorporated to calibrate stock abundance. Unfortunately, this latter capability cannot be used with tilefish as no fishery-independent sources of information exist. Fishery independent surveys, routinely conducted by NEFSC since 1963, fail to sample the deep offshore regions where tilefish are caught by commercial longline gear, due to trawl gear configuration, including roller gear. Despite the high total landings of tilefish in the last two decades, sampling of the commercial fishery is intermittent and suitable length or age composition information does not exist. Reliable effort data are available however, and this information permits application of the surplus production model. In view of the overall paucity of existing data, and the long period that would be required to obtain relevant new information, the Subcommittee and the SARC noted that some form of surplus production model is the only feasible method for assessing stock status in the near-term.

## APPLICATION OF A SURPLUS PRODUCTION MODEL

Catch and effort data from the longline fishery are available for 1973 to 1982 from logbook data maintained by fishermen from Barnegat, N.J. (Turner 1986); and for 1977 to 1992 from the NEFSC weighout data base, which included Montauk, N.Y. (the second principal tilefish port) in addition to Barnegat, N.J. Because the two original series were recorded in different units, a single series was constructed in four steps:

- 1. Effort data from 1977 to 1992 collected under the NEFSC weighout system were standardized using a general linear model (GLM) incorporating year and individual vessel effects.
- 2. Those annual effort data were raised, to reflect effort associated with regional land-

ings not reported under the weighout system.

- 3. That raised effort series was then related to the 1973-1982 (Barnegat, N.J.) series by a significant linear regression of points from the 1977-1982 period of overlap between the two series.
- 4. The 1973-77 period of the Barnegat, N.J. series was rescaled to units of the 1977 to 1993 series based on the linear regression relationship (Table G1, Figure G1).

The Southern Demersal Committee and the SARC reviewed one application of a nonequilibrium form of the surplus production model (Prager 1991) to tilefish. Based on estimated parameters from this model formulation, maximum sustainable yield (MSY) is estimated at around 1200 mt, substantially lower than previously estimated (2500 mt; Turner 1986) (Table G2). Fishing mortality rate at MSY was estimated to be approximately 0.11 at MSY (Table G2). Current biomass levels are at about 40% of the level producing MSY (Figure G2). Fishing mortality rates are currently about three times larger than F<sub>MSY</sub> (Table G2, Figure G2). Relative levels of  $F(F_{1992}/F_{MSY})$  and biomass  $(B_{1992}/B_{MSY})$  are more accurately estimated by this model than absolute values of  $F_{1992}$ ,  $F_{MSY}$ ,  $B_{1992}$  or  $B_{MSY}$  alone.

The known life history aspects of tilefish however, warrant caution in interpretation of results. Tilefish are long-lived and the age structure of the population may induce lags in the response to fishing mortality. More complicated surplus production models might be applied, but the extra parameters required would likely reduce the generality of the conclusions in view of the 18 years of data available. Little is known about the variability of tilefish recruitment, but the model results suggest a maximum instantaneous rate of population biomass increase (r) on the order of 0.22 per year. The model fit is particularly imprecise for r, which may indicate a flat likelihood surface. As the predicted  $F_{MSY}$  is simply half of r, the Southern Demersal Subcommittee and the SARC suggested caution interpreting this model output.

The SARC felt additional caution was warranted in light of the number of parameters being estimated in the model version presented. If the number of parameters estimated is too large, parameter estimates may become correlated with each other, and lead to inaccurate parameter estimates and artificially good model fits. Additional exploration of model behavior was recommended (*e.g.*, the effect of estimating more parameters from auxiliary data and fewer parameters from the model).

A number of alternative approaches were considered to refine and verify the model results. Cross-validation of the model, perhaps by dividing the catch and effort time series into geographical regions, may assist in validation of this aspect of model performance. Simulation comparisons with age structured populations may also offer insights on the suitability of surplus production models to long-lived species. Another approach suggested was to compare tilefish life history parameters with predictive relationships derived from other species.

#### CONCLUSIONS

The only data currently available to develop an overfishing definition for tilefish are catch and effort data from the longline fishery. Estimates of F<sub>max</sub> are outdated, and new data on mean weight, maturity, and partial recruitment at age are needed before  $F_{max}$  (or  $F_{0.1}$  or  $F_{\text{MMSP}}$ ) can be recalculated. Data on the age and length structure of catch would also be needed to monitor fishing mortality rates. The catch and effort data can currently be used to estimate  $F_{MSY}$  and  $B_{MSY}$ , but the results will not be as precise or accurate as  $F_{max}$ -type estimates. Fishing mortality should be reduced at least 50% to rebuild stock size and increase yield, based on the first results from an MSY (surplus production) model. Caution should be used when interpreting those results, because questions about precision and accuracy of model results are still being investigated.

#### MAJOR SOURCES OF UNCERTAINTY

- The interview coverage of the fishery is very low, making effort estimates uncertain.
- The instantaneous rate of population biomass increase (r) is imprecisely estimated in this formulation. This imprecision leads to corresponding imprecision in F<sub>MSY</sub>.
- The life history of tilefish indicates that longevity, and hence potential age structure, in the population may induce lags in response to fishing mortality. This may ultimately make surplus production models less suitable than age structured models.

| Year | Total<br>longline<br>catch (mt) | Weighout<br>std.<br>CPUE | Total <sup>1</sup><br>adj.<br>effort                                                                            | Turner<br>CPUE<br>(1986) | Rescaled<br>CPUE                        | Total<br>std.<br>effort |
|------|---------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------|-------------------------|
| 1973 | 371                             |                          | •                                                                                                               | 0.206                    | 6.54                                    | 56.7                    |
| 1974 | 553                             |                          | . •                                                                                                             | 0.135                    | 4.37                                    | 126.5                   |
| 1975 | 599                             |                          | 1.1.1.1                                                                                                         | 0.096                    | 3.18                                    | 188.5                   |
| 1976 | 1019                            |                          | e se la companya de l | 0.114                    | 3.73                                    | .273.3                  |
| 1977 | 1751                            | 3.96                     | 441.6                                                                                                           | 0.125                    | (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, | 441.6                   |
| 1978 | 3091                            | 4.31                     | 716.8                                                                                                           | 0.132                    |                                         | 716.8                   |
| 1979 | 3390                            | 3.50                     | 967.9                                                                                                           | 0.100                    |                                         | 967.9                   |
| 1980 | 3587                            | 3.03                     | 1184.1                                                                                                          | 0.091                    | •                                       | 1184.1                  |
| 1981 | 3231                            | 2.85                     | 1132.5                                                                                                          | 0.090                    |                                         | 1132.5                  |
| 1982 | 1886                            | 1.80                     | 1049.1                                                                                                          | 0.051                    |                                         | 1049.1                  |
| 1983 | 1779                            | 1.37                     | 1297.2                                                                                                          |                          |                                         | 1297.2                  |
| 1984 | 1919                            | 1.00                     | 1927.8                                                                                                          |                          | ter an                                  | 1927.8                  |
| 1985 | 1909                            | 0.98                     | 1948.3                                                                                                          |                          | · · · ·                                 | 1948.3                  |
| 1986 | 1693                            | 1.16                     | 1461.8                                                                                                          | 1 1 1 A                  |                                         | 1461.8                  |
| 1987 | 3029                            | 1.60                     | 1887.5                                                                                                          |                          |                                         | 1887.5                  |
| 1988 | 1328                            | 1.10                     | 1206.6                                                                                                          | · · · ·                  |                                         | 1206.6                  |
| 1989 | 437                             | 0.81                     | 537.5                                                                                                           |                          |                                         | 537.5                   |
| 1990 | 852                             | 0.86                     | 996.0                                                                                                           |                          |                                         | 996.0                   |
| 1991 | 1164                            | 0.73                     | 1599.2                                                                                                          |                          |                                         | 1599.2                  |
| 1992 | 1477                            | 0.82                     | 1799.6                                                                                                          |                          |                                         | 1799.6                  |

Table G1.Results of effort standardization for tilefish 1973-1992 based on GLM with year and vessel effects<br/>(1977-1992) and rescaled logbook data (1973-1976)

<sup>1</sup> Total adjusted effort 1977-1992 = total longline catch/weighout standardized CPUE.

<sup>2</sup> Total standardized effort 1973-1976 = total longline catch/rescaled CPUE, where rescaled CPUE is based on linear relationship between weighout standardized CPUE and Turner (1986) logbook CPUE, 1977-1982. CPUE is days fished, calculated as hours fished per longline set X number of sets/ 24 hours.

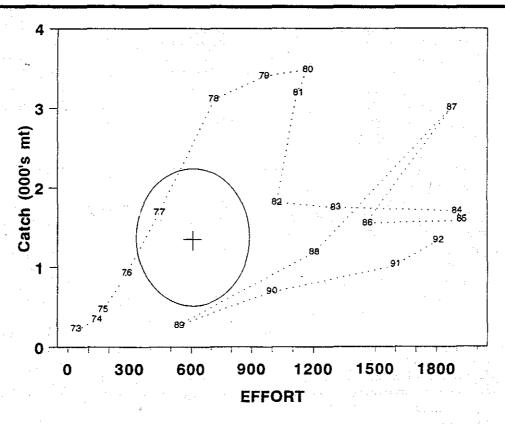



Figure G1. Catch and standard effort for tilefish longline fishery. 1973-1992. MSY and F<sub>may</sub> indicated within ellipse designating 95% Cl.

| Table G2. | Nonequilibrium surplus production model (ASPIC) for tilefish 1973-1992, using standardized effort |
|-----------|---------------------------------------------------------------------------------------------------|
|           | data <sup>1,2</sup>                                                                               |

| Parameter        | Estimate  | Bootstrap<br>Median | Nonparameter<br>SE | Nonparameter<br>CV |
|------------------|-----------|---------------------|--------------------|--------------------|
| MSY              | 1.218 mt  | 1,345 mt            | 478.1              | 35.55%             |
| SS @ MSY         | 11,020 mt | 11,350 mt           | 2944               | 25.94%             |
| F@MSY            | 0.111     | 0.119               | 0.068              | 57.15%             |
| f@MSY            | 599.6     | 590.6               | 144.1              | 24.40%             |
| B <sub>1</sub>   | 25.090 mt | 21,570 mt           | 8351               | 38.72%             |
| K                | 22.040    | 22,700              | 5889               | 25.94%             |
| <b>r</b>         | 0.221     | 0.238               | 0.136              | 57.15%             |
| $\mathbf{q}_{1}$ | 0.00018   | 0.0002              | 0.00007            | 34.74%             |

<sup>1</sup> Variability estimates based on bootstrap method using 101 trials. B1 equals initial biomass estimate, K equals carrying capacity of habitat, r equals the intrinsic rate of increase for the population, and q equals the catchability coefficient.

<sup>2</sup> The basic surplus-production model is:

 $dB_t/dt = rB_t - r/KB_t^2 - qf_tB_t$ 

where:  $B_t = biomass$  at time t; r = intrinsic rate of population increase; K = the carrying capacity.

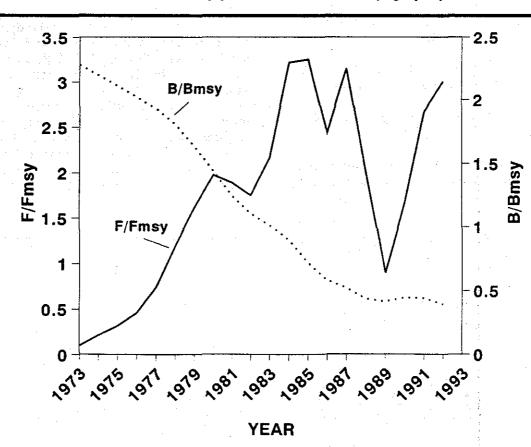



Figure G2. Ratios of estimated F/F<sub>may</sub> and Biomass/Biomass at MSY in the tilefish longline fishery, as determined from the surplus-production model.

- Page 112
  - No information is currently available on number of hooks and hook spacing over time, which leads to uncertainty in estimating effort.
  - If parameter estimates are correlated with each other (because too many parameters were estimated), parameters (*e.g.*, MSY, F<sub>MSY</sub>, B<sub>MSY</sub>) may not be accurate and may appear artificially precise.

### **RESEARCH RECOMMENDATIONS**

- Incorporate auxiliary data to estimate parameters such as B<sub>1</sub> or r independent of the model.
- Incorporate effect of hook number and line length in estimates of CPUE if feasible and data are available.
- Collect data on age, maturity, and size composition from the fishery, to estimate mean weight at age, maturity at age and exploitation pattern, monitor fishing mortality rate, and evaluate changes in stock production rates.
- Encourage state and university participation in collection of biological data (*e.g.*, as noted above), if possible.
- Increase interview rate in tilefish fishery to improve accuracy of CPUE estimates.
- Investigate alternative appropriate surplus production formulations.
- Verify model results by cross-validating, *e.g.*, fitting model using only part of the data.

- Evaluate suitability of surplus production models for long-lived species by simulation. Compare results of surplus production models with age-structured population models.
- Compare tilefish life history parameters with predictive relationships derived from other species to investigate accuracy of r estimate.

### REFERENCES

- NEFSC [Northeast Fisheries Science Center]. 1992. Report of the Fourteenth Northeast Regional Stock Assessment Workshop (14th SAW). Woods Hole, MA: NOAA/NMFS/ NEFSC. NEFSC Ref. Doc. 92-07.
- Prager, M. H. 1991. User's manual for ASPIC: A stock-production model incorporating covariates. Program Version 2.8a. Miami, FL: NOAA/NMFS. SEFC Ref. Doc. MIA-91/ 91-20.
- Schaefer, M. B. 1954. Some aspects of the dynamics of populations important to the management of commercial marine fisheries. *ICCAT* [International Commission for the Conservation of Atlantic Tunas] Bull. 1:27-56.
- Schaefer, M. B. 1957. A study of the dynamics of the fishery for yellowfin tuna in the eastern tropical Pacific Ocean. *ICCAT* [International Commission for the Conservation of Atlantic Tunas] *Bull.* 2: 247-285.
- Turner, S.C. 1986. Population dynamics of and, impact of fishing on tilefish, Lopholatilus chamaeleonticeps, in the Middle Atlantic-Southern New England region during the 1970's and early 1980's. New Brunswick, N.J.: Rutgers University. Ph.D. dissertation.

# SARC ASSESSMENT METHODS SUBCOMMITTEE CANDIDATE TERMS OF REFERENCE

The following candidate terms of reference include explicit suggestions tabled during the SARC 16 Meeting (June 21-25, 1993); several items that by implication must be examined to address assessment issues raised at SARC 16; and suggestions that have arisen during previous SARC meetings. Although these terms of reference were prepared by the chairman of the Assessment Methods Subcommittee based on discussions at this meeting, the SARC did not review the draft due to lack of time.

The complexity and the amount of work needed to address these items varies greatly. The Methods Subcommittee meetings are likely to be about five days in duration. Although some preliminary studies may be carried out prior to Subcommittee meetings (depending upon the available time of Subcommittee members), it is likely that much of the intensive computing work will be done at the meetings. In this environment, it is unlikely that more than two issues can be addressed during a typical Subcommittee meeting. Some items are sufficiently substantive that they will need to be addressed as sole topics during a five-day Subcommittee meeting.

## 1. POTENTIAL BIASES IN SARC ASSESSMENT RESULTS

- Biases in the methods employed ADAPT, DeLury, Production Models, etc.
- Biases due to database limitations, e.g. missing discards and/or recreational catches.
- As appropriate, examine using: Bootstrap methods Simulation modeling Retrospective analysis
- Emphasize the management implications (if any) of potential biases, *e.g.* effect on current F and SSB estimates; on estimates of overfishing definitions (*e.g.* F<sub>200</sub>); on estimated catches and F's in projection years, *etc.*

# 2. METHODS FOR MEDIUM-TERM STOCHASTIC PROJECTIONS

Consider the methods and the assumptions needed to carry out medium term (5 to 10 year), stochastic projections. Discuss software development issues that will allow straightforward linkage with currently used tuning methods, such as ADAPT. Discuss the statistical and graphical methods that may best summarize and display results.

## 3. MULTIPLE INDICES OF ABUNDANCE WITHIN THE DELURY MODEL

Although multiple indices of abundance are used routinely in ADAPT, only indices from a single survey (recruit and fully-recruited) have been used in the DeLury models.

The Methods Subcommittee should investigate procedures for incorporating abundance from multiple sources into the DeLury model (e.g. from NMFS surveys, state surveys, CPUE data). Procedures for appropriately weighting the various indices are critical in this endeavor.

## 4. CPUE-BASED INDICES OF ABUNDANCE FOR VPA TUNING

Current usage of CPUE-based indices of abundance for VPA tuning is problematic because:

- The indices are based on total catch-at-age data. An inherent correlation results when using them with a regression-based tuning method, such as ADAPT.
- The basic data used are landings per unit effort rather than catch in number per unit effort. In many cases, it is necessary to make tenuous assumptions regarding identical size composition among fishery components and across years in order to use these data as indices of age-specific stock size in number.

#### Page 114

The Methods Subcommittee should investigate the estimation of catch-at-age by fleet component, and the development of CPUE indices (in number) from the better sampled fleet components.

## 5. CALIBRATION OF RECRUITMENT INDICES

Calibration of recruitment indices and historical VPA estimates in ADAPT (using the default option) differs from that done with methods used in the ICES arena. The primary difference is the assumption of a linear relationship (the ADAPT default option) *vs* the assumption of a log-linear relationship in the ICES methods. A secondary difference is the usage (in the ICES methods) of shrinkage toward the mean.

The Methods Subcommittee should examine these two calibration models using retrospective analysis, and provide guidance on their usage within ADAPT.

## 6. EFFECTS OF OUTLIERS IN SURVEY DATA

Investigate the effect of outliers in survey catch per tow data on ADAPT results (*e.g.* the effect on current F and SSB; on F's and catches in the projection years). If these outliers bias management-related results, suggest methods for reducing their effect (*e.g.* objective methods for outlier identification; the use log or other transformation in developing indices, *etc.*)

# 7. SENSITIVITY OF ADAPT RESULTS TO MULTIPLE INDICES

Develop quantitative measures of the effect of individual indices on ADAPT results (*e.g.* the effect on current F and SSB; on F's and catches in projection years).

## 8. EXTENDING THE TIME SERIES OF STOCK-RECRUITMENT DATA

Most age-structured assessments reviewed by the SARC provide recruitment and SSB results (from VPA) for the most recent 10 to 15 year period. However, survey indices are available for nearly 30 years. A longer time series of stockrecruitment data would be useful in developing overfishing definitions.

The Methods Subcommittee should investigate procedures for extending the stock-recruit data using calibration and smoothing techniques.

#### **UPCOMING MEETINGS**

The chairman, Dr. Vaughn Anthony, reminded the participants that the SAW Steering Committee scheduled the 16th SAW Plenary Meeting for 29 July 1993 at the Air Port Ramada in East Boston, Massachusetts. It will be a one-day meeting for the purpose of presenting and finalizing the Advisory Report on Stock Status. Future Plenary meetings will be held in conjunction with planned Mid-Atlantic and New England Fishery Management Councils, or Atlantic States Marine Fisheries Commission meetings.

The SAW Steering Committee also set the timing for SAWs 17 and 18. The committee planned to hold the SAW-17 SARC meeting during 29 November - 3 December 1993 and the Plenary the day before the January 1994 meeting of the Mid-Atlantic Fishery Management Council. The SAW-18 SARC meeting is scheduled for 20 - 24 June 1994 and the Plenary the day before the July meeting of the New England Fishery Management Council.

#### THE SARC PROCEDURE

The work of the subcommittees, the heavy meeting agenda, and the way SARC carries out its business under the current (new) SAW structure was discussed.

The superb job done by subcommittees in preparing documents for the SARC meeting was noted, as were the excellent presentations by subcommittee chairs, and the consistently good assessments. In addition to subcommittee reports, SARC members found the detailed species assessment documents to be useful as well.

As this was the first meeting held under the "new" SAW structure, some growing pains were experienced within the SARC procedure. Discussion of the role of the SARC versus the role of its subcommittees indicated that it was not clear where the responsibilities of the subcommittees end and those of the SARC begin. A major question was the detail of the SARC review. Should the SARC be concerned with the details already reviewed by subcommittees? In spite of the subcommittees' work, some indicated that it was important for the SARC to have the opportunity to review the assessments from "another perspective". The chairman made it clear that the responsibility of the SARC was to peer-review the assessments. The detail required should vary from group to group.

In discussion of the "heavy" (12 species/ stocks) agenda, it was suggested that the steering committee set the number of species that can realistically be reviewed at a one week meeting, since allowing the subcommittees the flexibility to select the terms of reference to meet in the case of second and third priority species, clearly did not work. Each group felt that they should do everything indicated, regardless of priority. As management responsibilities increase, however, a much shorter list of species to review may not be an option, affirming the need to improve the SARC's efficiency.

The chairman noted that the development of new draft advisory report sections consumed much meeting time, which prevented the review of analyses for additional species. Once the first advisory report for each species has been established, however, the development of subsequent advisory documents should be easier and faster.

Specific suggestions from participants to improve the SARC procedure included the following:

- The SARC should clearly outline the duties of its subcommittees (the terms of reference were not enough).
- As a major role of the SARC is the development of scientific advice for fisheries management, the responsibility for the production of the advisory report should lie within the SARC; not with outside rapporteurs. (Rapporteurs for this SARC meeting were chosen as follows: (1) the SAW chairman asked each subcommittee to name a rapporteur from the subcommittees who would draft the SARC report with the subcommittee chairman; (2) Dr. T.P. Smith was asked by the SARC chairman to serve as rapporteur for the entire advisory report, assisted by the rapporteurs of for species of the SARC report; and (3) the intent of the procedure was to promote continuity across all advisory reports.)
- Rapporteurs should be members of the SARC so as to sort out the advice and record **their** (SARC's) ideas directly. Advice should be generated by SARC members only, as

token approval of outside rapporteurs' reports would be misleading to managers.

• To assure a thorough, efficient, review, SARC members should be assigned the responsibility for certain areas of the agenda (*i.e.*, thoroughly review one or two species) prior to the meeting. This would result in a better level of assimilation in certain areas on the part of SARC members, who would thus be better prepared to lead relevant discussions.

To further save time at the meeting, SARC members should bring a draft advisory report on their assigned species to the meeting, a report which would be modified according to consensus.

- Changes in advisory report drafts should be noted on overheads to make it easier for participants to follow.
- SARC member rapporteurs could draft reports outside the meeting hours so that they would not be distracted from participation at the meeting.
- There should be a single rapporteur (editor) for all advisory reports to assure continuity from stock to stock.